ヒートアイランド実態調査 中間報告

岡崎 淳 井上智博 松本邦男¹⁾ (1:千葉県環境生活部環境政策課)

1 はじめに

過去 100年間に地球温暖化の影響により地球の平均 気温は約 0.6 上昇したと言われている。一方,東京 など日本の大都市の平均気温は約 2~3 上昇しており,この差は地球温暖化の影響に加えて,ヒートアイランド現象の影響によるものと考えられている。千葉 県では 2012 年度を目途にヒートアイランド対策に係るガイドラインを策定することとし,まず 2010 年度 ~2011 年度の 2 か年の予定で県内の 129 地点の気温を測定し,県内のヒートアイランド現象の実態把握を進めている。本報告は,2010 年度の実態調査の結果について,中間報告として取りまとめたものである。

2 調査

2・1 調査期間

実態調査 2010 年 7月~2012年3月(本 報告は2010年7月~ 2011年3月を対象)

2・2 使用機器

ボタン型自動記録式

温度計(写真)

直径:約17mm,厚さ:約6mm,重さ:約3.3g,測

定精度: 0.5 , 測定間隔: 30 分

2・3 調査地点

図1に調査地点を示した。県東部,南部では10km メッシュに1か所,北西部,東京湾岸地域では5km メッシュに1か所とし,129地点(この他に参考地点と して環境研究センター市原地区)に温度計を設置した。 設置場所は各メッシュ内の小学校の百葉箱を基本とし, 百葉箱が無い場合は簡易百葉箱を設置した。また,小 学校が無い場合は公的機関に設置した。

2・4 温度計の回収等

(1)環境研究センターから各小学校等に郵送で温度

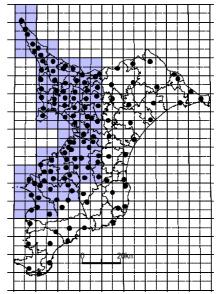


図1 調査地点図 (灰色は5kmメッシュに1箇所配置した地域である。)

計を送り,各小学校等において百葉箱に設置する。 (2)約2か月ごとに交換用の温度計を郵送,引き換えに学校より記録済み温度計を環境研究センターに返送する。

3 結果

3・1 測定結果

図 2 に日最低気温 25 以上日数(以下,熱帯夜日数),図 3 に日最低気温 0 未満日数(以下,冬日日数),図 4 に日最高気温 30 以上日数(以下,真夏日日数),図 5 に日最高気温 35 以上日数(以下,猛暑日日数)の分布を示した。

(1)熱帯夜日数

夏季のヒートアイランド現象の指標としてよく用いられる熱帯夜日数が 50 日以上記録したのは,千葉市から船橋市,市川市,浦安市にかけての東京湾岸地域と八千代市,松戸市,富津市の 11 地点であった。一方,10 日未満の地点は,房総半島の中央部と九十九里町,横芝光町,東庄町の11 地点であった。

(2)冬日日数

冬季のヒートアイランド現象の指標には,冬日日数がよく用いられるが,冬日日数が10日未満であったのは,葛南地域から千葉市,市原市,君津市,館山市,鴨川市に至る湾岸地域の27地点であった。一方,25日以上の地点は房総半島の中央部と成田市,野田市,印西市,君津市の11地点であった。

(3)真夏日日数

真夏日日数が 65 日を超えたのは,千葉市,柏市,白井市の3 地点で,そのうち最も多かったのは柏市の 68 日であった。また,60 日以上の地点が県西部で多く見られた。一方,50 日未満の地点は銚子市から館山市にかけての太平洋岸地域の 16 地点であった。

(4)猛暑日日数

猛暑日日数が最も多かった 地点は柏市内の地点で 39 日で

あった。25 日以上であったのは野田市から香取市にかけての県北部地域の13 地点と千葉市の2 地点,計15 地点であった。一方,猛暑日が0日の地点は,銚子市から館山市にかけての太平洋岸地域の18 地点であった。

(5)測定結果からみた地域的特徴

太平洋岸地域は真夏日,猛暑日,熱帯夜が少なく, 冬日も少ないことから,気温変化が緩やかという海洋 性気候の特徴を示しており,ヒートアイランド現象も 進んでいないことが認められた。また,猛暑日日数が 多かった東葛地域は,冬日日数も比較的多く,気温変 化が大きいという内陸性気候の地域であることが認め られた。東京湾岸地域は,熱帯夜日数が多く冬日日数 が少ないことから,ヒートアイランド現象が進んでい ると言えたが,猛暑日日数はそれほど多くないことが 認められた。

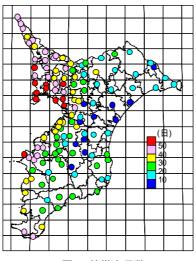


図2 熱帯夜日数

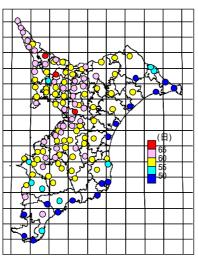


図4 真夏日日数

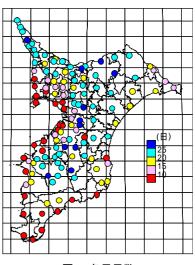


図3 冬日日数

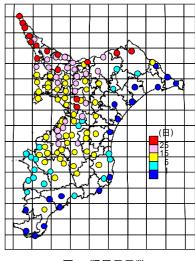


図 5 猛暑日日数

4 今後

実態調査は 2011 年度も継続して行う。最終報告には,今回の報告に含まれていない,ヒートアイランドの形成に大きく影響する排熱量分布や,アメダス等他のデータも取り入れて地域的な相違について検討する予定である。