# 乾性降下物調查-2020年度結果-

### 加藤晶子 石原 健 阿部德子 井上智博

### 1 はじめに

ガス状又は粒子状の大気汚染物質が、大気から直接、地表や湖沼、河川などに沈着することを乾性沈着と いい、このようにして沈着した大気汚染物質を乾性降下物という。大気中のアンモニア(NH3)や硝酸(HNO3) などの降下物は、流域の面源負荷に対して大きく影響を与えていることから、2008年度よりガス状及び粒子 状の窒素化合物等について観測を実施し、実態の把握及び経年変化等の検討を行っている。

#### 2 調査方法

5か所の調査地点を図1に示した。調査方法は酸性雨全国調査実施要領に基づくフィルターパック法(以 下「FP法」という。写真1及び図2参照)により行った。ガス状物質及び粒子状物質を2週間又は1カ月 単位で採取し、純水  $(F_2$  ろ紙のみ過酸化水素水) で抽出し、クロマトディスク $(0.20 \, \mu \, m)$ によりろ過した後で イオンクロマトグラフ(陽イオン:島津製作所 Prominence HIC-NS、陰イオン:東ソー IC-2010)を用 いて分析した。なお、旭、市原及び佐倉の3地点では同要領に基づくパッシブ法(以下「PS法」という。写 真2参照)によりNH3の測定も併用して行った。

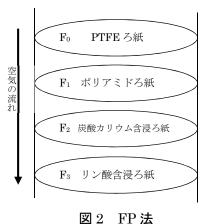







写真 2 パッシブサンプラー (PS 法)

写真 1 フィルターホルダー (FP 法)



1段目: 粒子状物質を採取

2 段目: HNO3 並びに SO2、HCl 及び NH3 ガスの一部を採取

3段目:  $F_1$ で採取されなかった  $SO_2$ 、HCl ガスを採取

4 段目: F1で採取されなかった NH3ガスを採取

## 3 調査結果

2020 年度に実施した、FP 法による測定成分毎の濃度の年平均値を表 1 に示した。また、年平均値から粒子状物質中の非海塩成分(nss- $SO_4$ <sup>2</sup>、 $NO_3$ 、nss-Ca<sup>2</sup>+及び  $NH_4$ +)の当量濃度を算出し、各成分を地点毎に陰イオン( $\Gamma$ A」と表記。)及び陽イオン( $\Gamma$ C」と表記。)に分類して図 3 に示した。

ガス状物質では  $HNO_3$  3.96 (旭)~12.41 (市原) $nmol/m^3$ 、 $SO_2$  10.18 (旭)~79.35 (市原) $nmol/m^3$ 、 $NH_3$  54.89 (清澄)~2599.22 (旭) $nmol/m^3$ であった。粒子状物質では  $SO_4^2$  20.30 (佐倉)~30.65 (市原) $nmol/m^3$ 、 $NO_3$  17.22 (清澄)~33.20 (市原) $nmol/m^3$ 、 $NH_4$  17.19 (清澄)~49.20 (旭) $nmol/m^3$  であった。

 $NH_3$ 及び  $NH_4$ +は畜産地域である旭の濃度が最も高く、清浄地域である清澄の濃度と比べると、 $NH_3$ では 約 47 倍、 $NH_4$ +では約 2.9 倍であった。また、 $SO_2$ 、 $SO_4$ 2-及び nss- $SO_4$ 2-は工業地域である市原の濃度が最も高かった。K+は勝浦で 4.30nmol/ $m^3$ であり他地点よりやや高い値であった。 $Ca^2$ +は市原で 14.83 nmol/ $m^3$ であり他地点より高い値であった。

| 調査地点 | ガス状物質(F <sub>1</sub> ~F <sub>3</sub> ろ紙) |                 |       |         | 粒子状物質(Fo ろ紙)       |                   |       |       |      |                  |                    |                       |
|------|------------------------------------------|-----------------|-------|---------|--------------------|-------------------|-------|-------|------|------------------|--------------------|-----------------------|
|      | HNO <sub>3</sub>                         | $\mathrm{SO}_2$ | HCl   | $NH_3$  | $\mathrm{SO}_4$ 2- | NO <sub>3</sub> - | Cl-   | Na+   | K+   | Ca <sup>2+</sup> | $\mathrm{Mg}^{2+}$ | $\mathrm{NH_{4^{+}}}$ |
| 旭    | 3.96                                     | 10.18           | 11.05 | 2599.22 | 21.14              | 31.05             | 69.68 | 69.92 | 3.00 | 9.18             | 7.67               | 49.20                 |
| 勝浦   | 5.39                                     | 12.29           | 27.50 | 64.03   | 24.71              | 20.55             | 50.02 | 73.93 | 4.30 | 7.21             | 9.02               | 17.65                 |
| 清澄   | 5.97                                     | 14.82           | 24.32 | 54.89   | 22.96              | 17.22             | 24.39 | 46.87 | 3.16 | 5.93             | 6.10               | 17.19                 |
| 市原   | 12.41                                    | 79.35           | 34.55 | 162.15  | 30.65              | 33.20             | 33.31 | 50.93 | 3.38 | 14.83            | 7.36               | 39.68                 |
| 佐倉   | 8.84                                     | 16.65           | 16.15 | 89.22   | 20.30              | 23.83             | 15.85 | 32.13 | 2.52 | 6.59             | 3.57               | 30.35                 |

表 1 2020 年度フィルターパック法 年平均値 (nmol/m³)

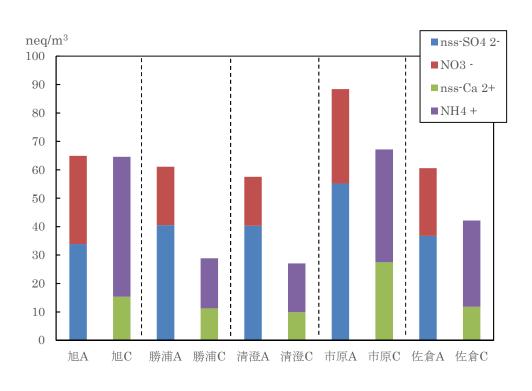



図3 各地点の粒子状物質中の非海塩成分の当量濃度

2011年からの旭、市原、佐倉、勝浦(2013年度から)、清澄(2013年度から)及び市川(2014年まで)の粒子状物質中の成分のうち、nss- $SO_4$ <sup>2</sup>、 $NH_4$ +の当量濃度(13か月移動平均)を図4及び図5に示した。各地点とも2014年をピークに特に2015年から2016年にかけて低下し、その後2017年からは横ばい傾向となっており、両成分の変動傾向はよく一致していた。そのため、粒子状物質の組成に硫酸アンモニウムが含まれていると思われた。

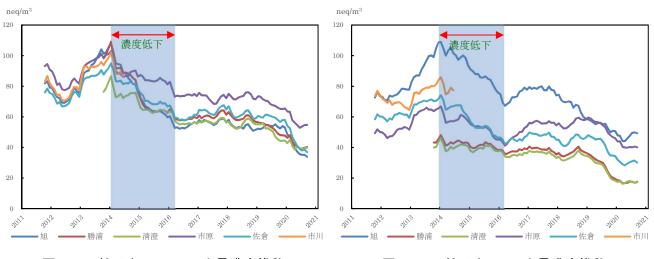



図 4 F<sub>0</sub> 粒子中 nss-SO<sub>4</sub><sup>2</sup>-当量濃度推移

図 5 F<sub>0</sub> 粒子中 NH<sub>4</sub>+当量濃度推移

2008 年からの旭、市原、佐倉の PS 法による  $NH_3$  濃度推移(13 か月移動平均)を図 6 に示した。畜産業の盛んな旭では 2008 年以降上昇する傾向が見られ、2014 年には 4500 nmol/m³ 程度になった。その後 2018 年には 3000 nmol/m³ を下回る値まで低下したが、2019 年以降は 3000 nmol/m³ 前後で推移した。市原、佐倉では全体的にほぼ横ばいで推移した。

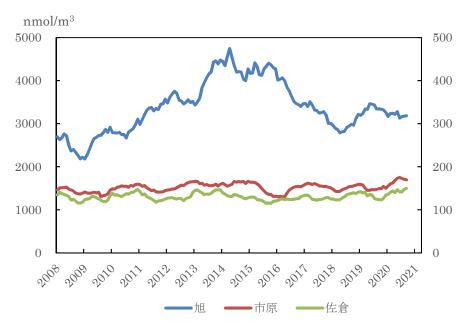



図 6 PS 法による NH3 濃度推移 (旭は左軸、市原及び佐倉は右軸)