全体のインプット(使用量)

クリーンエネルギー

72.2千kWh 太陽光発電 マイクロ水力発電 3.084.71 kWh

エネルギー

電気	154,946.7 1 kWh
都市ガス	1,726.2千㎡
LPガス	0.81千㎡
重油	59.8 <i>k</i> l
ガソリン	0.03 <i>k</i> l
軽油	0.8 <i>k</i> l
車両利用によるガソ	リン 69.9kl
車両利用による軽油	1.9 <i>k</i> l
車両利用による都市	ガス 0.7千㎡
(A4換算)	27,432千枚

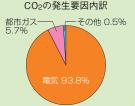
紙 薬品

硫酸	1,003 t
ポリ塩化アルミニウム	13,826 t
塩素	815 t
次亜塩素酸ナトリウム	391 t
苛性ソーダ	1,650 t
粉末活性炭	2,835 t

庁舎におけるインプット(使用量)

エネルギー

紙 (A4換算)


雷気 2,315.1千kWh 都市ガス 107.6千㎡ LPガス 0.05千㎡ 重油 3.5kl ガソリン Okl 車両利用によるガソリン 58.8kl 車両利用による軽油 1.7kl 車両利用による都市ガス 0.71m³

26,110千枚

電気の使用によるCO2の発生は、水 道事業における環境負荷の中で重要な ものの一つです。水道水をお客様にお 届けするまでには、浄水場の設備運転 や水を送るポンプの運転に多くの電気 を使います。

下の円グラフからは、発生するCO。 のうち電気の使用によるものが9割以 上を占めていることがわかります。

CO2の発生要因内訳

オゾン接触池

活性炭吸着池

におい等をオゾンで 分解します

におい等を活性炭 で吸着させます

高度浄水処理

川や沼の水の汚れがひどく、通常の浄水処理ではにおい等が残ってしまう 時に適した処理です

印旛沼を水源とする柏井浄水場の東側施設、高滝ダムを水源とする福増浄 水場と江戸川を水源とするちば野菊の里浄水場で行っています

庁舎におけるアウトプット(排出量)

CO₂ 1.264.8 t-CO₂ NOx 1.0 t 0.3 t SOx 一般廃棄物 116.2 t

全体のアウトプット(排出量)

CO₂ 63,416.8 t-CO₂ NOx 25.4 t SOx 17.3 t 浄水場発生土量 25.208 t (再資源化量 25,208 t) ·般廃棄物 153.9 t 浄水場発生土以外の産業廃棄物 41.6 t (水質センターを含む) ※2