食鳥処理場の衛生状況について

南総食肉衛生検査所 中野 仁志 高馬 洋之 山田 裕康 三浦 貞夫 林 亨 樋泉 礎

はじめに

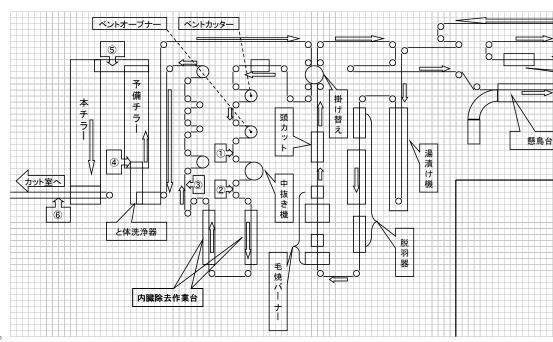
近年、カンピロバクターに起因する食中毒事件が増加し、サルモネラに起因するものと共に上位を占めている。これらの原因食品として食鳥肉が問題となっているが、その根源として、食鳥処理場における微生物汚染が挙げられる。我々が行っている日々の食鳥検査業務においても、中抜き工程、内臓除去工程で、腸管内容物によると体汚染、チラー水による汚染の拡散が懸念されている。この状況を具体的に食鳥処理業者に示し、改善を促すため、管内の大規模食鳥処理場の細菌汚染実態調査を行った。これにより食鳥処理業者の衛生意識の向上、処理工程の改善という効果がみられたので、報告する。

材料及び方法

- 1 対象期間 平成19年1月23日から2月6日の13日間
- 2 対象施設 管内2ヶ所ある大規模食鳥処理場のうちの1施設(大規模食鳥処理場とは、年間30万 羽以上の処理を行う施設をいう)
- 3 調査開始前の話し合い
 - (1) 当該施設は、採卵鶏と銘柄鳥(以下地鶏という)で、工程の異なる2方式の処理を行っており、 採卵鶏については、手作業による内臓除去が、地鶏については、中抜き機による工程が腸管内 容物の付着が目立っている。また地鶏では、予備チラー水への塩素添加が行われていない。これらのポイントについて細菌汚染実態調査を実施した。
 - (2) 調査結果を踏まえ、処理工程を一部変更して細菌汚染調査を実施した。
 - (3) 工程変更調査の採材日に、施設側の代表者、食鳥衛生管理者を交え、話し合いの場を持った。

4 細菌汚染調査

(1) 採卵鶏


- ア 検査検体: と体の背面、5 cm × 5 cm の面を、内臓除去作業後(図1の)にて、ふきふきチェックで拭き取ったもの。及び予備チラー水、本チラー水。
- イ 検査項目:一般細菌数、大腸菌群数、サルモネラ、カンピロバクター。また、チラー水については、塩素濃度、水温、透視度の測定を追加。

(2) 地鶏

- ア 検査検体: と体の背面、 $5 \text{ cm} \times 5 \text{ cm}$ の面を、中抜き機の前後(図1の 、) 予備チラー 通過前(図1の) 予備チラー通過後(図1の) 本チラー通過後(図1の) にて、ふきふきチェックで拭き取ったもの。及び予備チラー水、本チラー水。
- イ 検査項目:大腸菌群数、サルモネラ、カンピロバクター。また、チラー水については、一般細菌数、塩素濃度、水温、透視度の測定を追加。

(3) 地鶏・工程変更後

- ア 検査検体: 地鶏と体の背面、5 cm × 5 cm の面を、図1の 、 、 にて、ふきふきチェックで拭き取ったもの。及び予備チラー水、本チラー水。
- イ 検査項目:大腸菌群数。また、チラー水については、塩素濃度、水温、透視度の測定を追加。なお、検査方法は、一般生菌数、大腸菌群数は食品衛生検査指針に、サルモネラ、カンピロバクターについては、「食鳥処理場における HACCP 方式の導入による衛生管理指針」に基づく検査法に準じて行った。

法に準じて行った。

図1 食鳥処理工程及び採材場所

結果及び考察

1 調査開始前の話し合い

地鶏では、体格差によりアームが腹腔内に入らず、腸管内容物を押し出すことが多い(32 羽/100 羽)ことを指摘した。

また、予備チラーへの塩素添加は、製品への塩素臭残留を懸念し、実施していない。

2 細菌汚染調査結果

調査結果は、下表のとおり。

(1) 拭き取り検体の大腸菌群数、サルモネラ、カンピロバクター調査結果。

実施日	処理種	採材場所	検体数	最低值 (cfu/100cm²)		平均値 (cfu/100cm²)		最高値 (cfu/100cm²)		サルモネラ ^{※1} 陽性数	カンピロ バクター ^{※2} 陽性数
1月23日	採卵鶏	3	10	6.6	×10 ²	3.5	× 10 ⁴	1.2	× 10 ⁵	3	9
1月25日	地鶏	1	3	2.4	×10 ⁴	4.4	× 10 ⁴	8.0	× 10 ⁴	0	0
		2	10	2.1	×10 ⁶	5.8	× 10 ⁶	1.5	× 10 ⁷	0	0
		4	3	2.6	×10 ³	2.5	× 10 ⁴	4.2	× 10 ⁴	-	-
		5	3	3.3	×10 ³	8.7	× 10 ³	1.8	× 10 ⁴		ı
		6	3	1.1	×10 ³	2.8	× 10 ³	6.2	× 10 ³	-	-
	地鶏 変更後	1	3	2.8	×10 ³	9.2	× 10 ³	2.1	× 10 ⁴	-	-
		2	10	8.0	× 10 ³	1.9	× 10 ⁶	1.1	× 10 ⁷	_	-
		6	3	1.3	×10 ³	1.5	×10 ⁴	4.6	×10 ⁴	_	-

X1: Salmonella O7

※2: Campylobacter jejuni

(2) 拭き取り検体の一般生菌数検査結果

実施日	処理種	採材場所	+仝/士※6	最	低值	平均値		最高値	
			検体数	(cfu/	100cm ²)	(cfu/	$100 \mathrm{cm}^2$	(cfu/	/100cm ²)
1月23日	採卵鶏	3	10	2.3	× 10 ⁵	2.4	× 10 ⁶	6.0	×10 ⁶

(3) チラー水調査結果

処理種	検体名	採材時間	温度 (℃)	透視度 (cm)	塩素濃度 (ppm)	大腸菌群数 (cfu/ml)	一般生菌数 (cfu/ml)
採卵鶏		開始前	12	>30	0	0	2.0×10^{1}
	予備チラー水	1時間後	13.3	2.8	10	0	9.5×10^{2}
		2時間後	15.1	1.4	40	0	4.0×10^{2}
		開始前	-0.7	21.4	>150	0	1.0×10^{1}
	本チラー水	1時間後	1.2	9.6	>150	0	1.5×10^{1}
		2時間後	4.1	5.2	>150	0	7.0×10^{1}
地鶏	予備チラー水	開始前	11.9	>30	0	1.5 × 10 ⁰	1.6×10^{2}
		40分後	13.2	15.3	0	3.0×10^{3}	2.1×10^{4}
	本チラー水	開始前	0.5	28	120	0	1.9×10^{3}
		40分後	1.4	16.2	100	0	5.0×10^{0}
地鶏変更後		開始前	13.2	>30	20	0	_
	予備チラー水	20分後	13.5	23	10	0	_
		40分後	13.5	14.5	10	0	_
	本チラー水	開始前	8.0	>30	60	0	_
		20分後	1.9	22	50	0	_
		40分後	2.6	18	50	0	_

- (4) これらから、以下のことが確認できた。
 - ア 中抜き機を通過することで、汚染が2から3オーダー上がった。
- イ 工程変更をすることで、中抜き機前後の汚染が軽減された。
- ウサルモネラ、カンピロバクターの汚染は、採卵鶏でみられた。
- エ 塩素添加のないチラー水で、大腸菌群が検出された。
- オ 予備チラーへの塩素の添加は、滴下方式であり、時間とともに濃度の上昇が見られたが 開始直後は検出限界以下であった。
- カ 本チラーへの塩素の添加は開始前の1回だけであるが、急激な濃度の低下は見られなかった。

また、今回の調査では、採卵鶏の本チラー水の塩素濃度が測定限界以上であったが、これは作業員2名が、重複して塩素の添加を行ったためであった。

3 工程変更調査の依頼

地鶏の処理において、ベントオープナー、ベントカッター、中抜き機の洗浄装置を作業中に作動させる、予備チラーに塩素添加を行う、本チラーの塩素添加濃度を減少させる、という変更を行い、再度細菌汚染調査を実施した。

4 工程変更調査後の話し合い

(1) 提案事項等

ア 地鶏に関して

- ① 内臓摘出前の汚染対策として、各機器の洗浄装置を作動させながら処理する。
- ② 中抜き機の汚染対策として、洗浄ノズルの増設。
- ③ 予備チラーの汚染拡散対策として、塩素の添加。
- ④ 腸管内容物の汚染対策として、飼養者へ餌切りの徹底を依頼する。

イ 採卵鶏に関して

内臓除去後の細菌汚染対策として、チラー前の予備洗浄。

予備チラーの汚染拡散対策として、滴下方式に加え、作業開始前の塩素添加。

ウ 共通事項

本チラーへの塩素添加ミスがあったことを指摘。作業員2名の連絡不徹底が原因であり、 もし互いに添加したと思い込んでしまった場合には、塩素添加がなされないまま処理されてしまう恐れがある。点検表を利用するなどの対策をするよう指導した。

採卵鶏でサルモネラ、カンピロバクターが検出されたことを示し、汚染拡大防止のため、 一般衛生管理の徹底を促した。

(2) 食鳥処理業者の対応

ア 地鶏に関して

洗浄装置の作動は、調査以降も続ける。

中抜き機のノズルの増設を行う。

予備チラーへの塩素添加についても、調査以降も続ける。

餌切りは現在も行っており、これ以上は鶏の死亡率にも影響し、対応は難しい。

イ 採卵鶏に対して

チラー前の予備洗浄は、現在稼動させていない洗浄ノズルを作動させて対応する。 作業前の塩素添加を実施するよう検討する。

ウ 共通事項

連絡の徹底を行う。点検表についても検討する。

従業員教育に加え、ハセッパー水の導入などについても資料を集め検討している。

5 施設改善の現状について

- (1) 内臓摘出前の洗浄は、現在も続けている。
- (2)中抜き機に新たな洗浄ノズルを増設した。
- (3)チラー前の予備洗浄を行っている。
- (4) 塩素添加のトラブルを防ぐため、チラー水用の高濃度塩素測定器の購入を検討している。

6 まとめ

当該施設においては、食肉処理施設を併設し、最終製品を塩素処理しており、処理後の検査において、一般生菌数は有効数字以下、サルモネラ、カンピロバクターも検出されない状態であるため、中間工程の一般的衛生管理を重要視しないのではないか、という懸念があったが、我々の提案の幾つかをすぐさま実行に移すことを確約した。

以上のように、今回行った細菌汚染調査は、日頃から問題視していた点を、我々自身が再認識する とともに、具体的な数値を持って食鳥処理業者に示すことで、施設改善へとつながった。

このことにより、近年、次々と新しい問題が発生している食品衛生分野において、現状の衛生管理体制に甘んじることなく、常に改善が必要であるという姿勢を啓発出来たと考えている。