雰囲気制御SPSによる可視光応答光触媒の開発

~ポットミルを用いたTiコーティング手法の確立~

- 材料技術室 吉田 浩之
- 食品・化学技術室 西村 祐二
 - 生産技術室 中嶋 貴生
- プロジェクト推進室 大谷 大輔

千葉大学大学院融合理工学府 魯 云

Development of Photocatalysts Working under Visible Light Irradiation by SPS under Atmosphere Control \sim Establishment of Ti Coating Technique using Pot Mill \sim

Hiroyuki YOSHIDA, Yuji NISHIMURA, Takao NAKAJIMA, Daisuke OTANI and Yun LU

これまでに、遊星型ボールミルを用いた簡便でかつ煩雑な作業の必要のない、乾式コー ティング手法である遊星型ボールミルを用いたメカニカルコーティング法を提案してきた。 本報では、光触媒成膜の前段階として、さらに安価な回転台式ポットミルを用いて、金属 Ti成膜の作製を試みた。その結果、Ti薄膜表面は凹凸を有しその膜厚はMCT時間とともに 厚くなるが、700時間で約10µmに収束することが分かった。

1. はじめに

TiO₂に代表される光触媒は、紫外光を吸収する ことにより、その表面に吸着している物質が酸化、 還元されることが光触媒反応として知られており ¹⁾、幅広く研究・開発が行われている²⁾⁻⁶⁾。TiO₂ 光触媒は、そのバンドギャップが3.2eVであり、 380nm以上の紫外線がなくては電子が励起するこ とが出来ず、それ以下の波長、即ち可視光線では 光触媒機能は発現しない⁷⁾。

また,一般にTiO₂は微粉末であるため,実用的 に使用するためには,担体(基材)等への固定化 が望まれる。

薄膜の作製手法として,薄膜の作製手段として, 物理的蒸着法 (PVD) や化学的気相析出法 (CVD) に代表されるような気相合成法や,溶射法,コー ルドスプレー法 (CS) やエアロゾルデポジッショ ン法 (AD) などの粒子体積法がある。上述した PVD法やCVD法による作製方法は煩雑なプロセ スであり,また比較的大きな装置を必要とするも のである。溶射法による作製方法では,粉末に熱 を加え半溶融状態にして堆積するため,相変態な どの問題が発生するおそれがある。コールドスプ レー法やエアロゾルデポジッション法では,熱的 影響はないが、複雑形状を有する担体(例えば、 ボールや円板)上へのコーティングは容易ではない。 本報では、可視光応答TiO2薄膜作製の前段階と して、簡便で大型装置が必要のないメカニカルコ ーティング法⁸⁾ (Mechanical Coating Technique, 以下MCTと略記)を応用し、遊星型ボールミルよ りもより安価な回転台式ポットミルを用いてアル ミナボール上にTi薄膜を作製し、その表面形態、

断面状況, 膜厚及び結晶構造を解析することに より, ポットミルによるメカニカルコーティング 時間によるTi薄膜への影響について検討した。

図1 回転台式ポットミル

2. 実験方法

2.1 金属Tiのコーティング

成膜の出発金属粉末として、純度99.9%、平均 粒径35µmのTi粉末(住友金属工業(株))を使用し、 担体として、直径1mmのアルミナボール(ニッカ トー(株)、HD型)を用いた。MCTには、回転式 ポットミル(AN-3S、日陶科学(株))を使用した。 アルミナ製ポット内にTi粉末を40g及びアルミナ ボールを60g及びアルミナボタンを23個入れ、蓋 をして、回転速度185rpm、回転時間1000hまで、 大気雰囲気中、乾式にてTi薄膜を作製した。回転 速度は予備実験により、ポット内でアルミナボール が頂点まで上がり、鉛直下方へ落下する状態 (およそ1G)の値を用いた。

2.2 解析方法

作製したTi薄膜の解析には、マクロ観察、走査 型電子顕微鏡による表面観察及びX線回折装置に よる結晶構造解析を行った。膜厚については、試 料を樹脂に包埋し、ボールの直径の半分まで研磨 し、光学顕微鏡にて各試料につき10箇所測定し、 その平均値を膜厚とした。

3. 結果及び考察

3.1 Ti薄膜の外観及び表面形態

図2はMCT後のアルミナボールの外観を示したものである。最初白色であったアルミナボールがMCTの時間の経過に伴い、光沢のある金属色に変化している。この色の変化は、遊星型ボールミルと同じく⁸⁾、Ti薄膜の生成によるものと考えられる。

コーティング前(Oh)

600h 図5 MCT によるの Ti 粉末の形態の変化(SEM 像)

図6 MCT 時間による XRD パターンの変化

Ti薄膜の表面形態を図3に示す。コーティング前(0h)の試料は、アルミナ粒子が確認できる(図3(a))のに対して、MCT成膜後の試料表面(図3(b),(c))には、凹凸のあるTi薄膜が生成している。

また、このTi薄膜はPVDやCVD等で成膜した平 坦な形態ではなく、凹凸やボイドを含むミクロ構 造を有するものとなっている。また、GDやAD 法により作製された膜のように、堆積したような 構造となっている。本報の回転台式ポットミルを 用いたMCTよりも、遊星型ボールミルを用いたM CTの結果⁸⁰の方が、Ti薄膜は延性的に延ばされて いることが確認でき、これは衝突エネルギーの相 違によるものと考えらえる。

図4は試料断面を示したものであり, MCTの時間の経過とともに, 薄膜が厚くなっている。ポットミルによるMCTの時間が1000hの試料(図4(c))では膜厚がおよそ10µmに達している。

この結果から, MCTの時間を調整することにより膜厚のコントロールが可能であるといえる。

1000h

図5は、ポット内に残ったTi粉末を採取し、その粉末のSEM像を示したものである。600hの写真からTi粉末の角がどれ丸みを帯びていることがわかる。その後1000hではTi粉末表面に小さい付着物があることがわかる。

これはアルミナボール表面に, コーティングされた粒子がポットミルの粉砕作用により脱離した ことが示唆される。

3.2 Ti薄膜の結晶構造

図6にMCTにより作製されたTi薄膜を有する アルミナボタンのXRD結果を示す。

MCT前のアルミナボタン(図6(a))のXRD パターンでは、アルミナのピークのみが現れてい る。MCT後の試料では、Tiのピークが現れ、Tiの 成膜が確認できる。

3.3 Ti薄膜の膜厚

図7に, MCTの時間と膜厚の関係を示す。 MCTの時間の経過とともに, 薄膜は厚くなるが, その後膜厚の増加は, 比較的緩やかとなり, MCT 時間700hで, およそ10µmに収束した。

遊星型ボールミルによるMCTと比較し⁸, エラ ーバーの範囲が,小さくなった。これは,ポット ミルの衝撃力がマイルドであるためであると考え られる。

4. まとめ

本研究では回転式ポットミルを用いたメカニカ ルコーティング法によりTi薄膜を作製し、その特 性評価を行った。

その結果は以下のとおりである。

1)回転式ポットミルによるTiのコーティングは, 遊星型ボールミルと比較し,時間はかかるが安価 で容易にTi薄膜を作製できる手法である。

2)作製したTi薄膜は凹凸等のミクロ構造を有する。 3)膜厚は,MCT時間が長くなるに従い,単調に 厚くなる。その後,遊星型ボールミルMCTと同様 に,およそ10µmに収束した。

参考文献

- 野坂芳雄,野坂篤子,入門光触媒,東京書籍 (2004)
- A. Fujishima, X. Zhang, Comptes Rendus Chimie 6 (2006) 750-760.
- 3) B. Ohtani, Journal of the Surface Finishing

Society of Japan 57 (12) (2006) 872-877.

- R. Acosta, A.I. Martinez, A.A. Lopez, C.R. Magana, Journal of Molecular Catalysis A : Chemical 228 (2005) 183–188.
- A. Nakajima, N. Hayashi, Y. Taniguchi, Y. Kameshima, K. Okada, Surface and Coatings Technology: Chemical 192 (2005) 112–116.
- T. Docters, J.M. Chovelon, J.M. Herrmann, J. P. Deloume, Applied Catalysis B: Environmental 50 (2004) 219–226.
- Y. Nosaka, A. Nosaka, Introduction to Photocatalysis From Basic Science to Applications : Royal Society of Chemistry (2016)
- 吉田浩之,西村祐二,大谷大輔,魯 云:千葉 県産業支援技術研究所研究報告 No.13 (2015) 22-24