上水道事業と環境のかかわり

2 上水道事業における環境負荷 (平成28年度分)

河川や湖沼から原水を取り入れ、浄水場で きれいにしてお客様の元へお届けするまでの 過程で使用するエネルギーや資源(インプッ ト=使用量)と、それに伴い発生する環境負 荷(アウトプット=排出量)を示しています。

再生可能エネルギー

ガソリン

軽油

硫酸

塩素

車両利用

薬品

ダム

太陽光発電

マイクロ水力発電

【水道部】 浄・給水場におけるインプット エネルギー

電気	142,763.0 +kWh
都市ガス	1,871.5 千㎡
LPガス	0.3 千㎡
灯油	0.0 kL
A重油	40.4 kL
ガソリン	0.0 kL
軽油	0.5 kL

1,607 t にごりが固まりやすいレベルに原水のpHを調整します。

于kWh

于kWh

kL

kL

ポリ塩化アルミニウム 13,249 t 原水のにごりを固めます。 362 t 水道水の消毒に使用します。

66.2 4,487.6

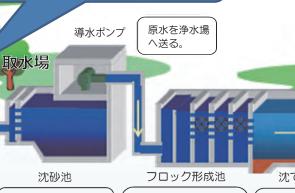
10.1

0.1

次亜塩素酸ナトリウム 688 t 水道水の消毒に使用します。塩素と比べ管理が容易で、給水場と一部の浄水場で使用しています。 苛性ソーダ 1,422 t 鉛給水管から鉛が溶出しにくいpHレベルにするため、浄水工程の最後でpH調整に使用します。

OA紙(A4換算)

粉末活性炭 2,579 t においの原因物質等を吸着します。


川や湖等から取り込んだ水量

原水中の土砂を沈降

させ除去する。

中央管理室

1,422 千枚

凝集剤(水のにごりを

固める薬品)を注入し

にごりを固まり(フ

ロック) にする。

取水ゲート

原水を取り 入れる。

沈でん池

オゾン接触

浄水場

活性炭吸着池

にごりの固まり (フロック)を 沈でんさせる。

かび臭いにお い等をオゾン で分解する。

分解されたに おいの元など を活性炭で吸 着させる。

CO,の発生要因内訳

電気の使用によるCO。の発生は、 水道事業における環境負荷の中で 重要なものの一つです。水道水をお 客様にお届けするまでには、浄水場 の設備運転や水を送るポンプの運転 に多くの電気を使います。

CO2は、二酸化炭素、NO2は窒素酸化 物、SOxは硫黄酸化物のことです。CO2 は、代表的な温室効果ガスで地球温暖 化の原因となり、NOxやSOxは、大気汚 染の原因となります。

厂その他 都市 0.35 ガスー 5.77 % 電気 93.88 %

円グラフからは、発生するCO2の うち電気の使用によるものが9割以 上を占めていることがわかります。

C【水道部】浄・給水場におけるアウトプット

CO ₂	75,406.5 t-CO ₂
NO _X	17.7 t
SO _X	7.2 t
浄水発生土量	19,016 t
(再資源化量	19,016 t)
一般廃棄物	22.5 t
浄水発生土以外の	
産業廃棄物 (※1)	125.2 t
(水質センターを含む)	

道事業と環境のかかわり

B 庁舎におけるインプット エネルギー

電気	2,051.7 千kWl
都市ガス	109.2 千㎡
LPガス	0.03 ∰mí

車両利用

ガソリン 53.8 kL 0.8 kL 軽油 天然ガス 2.1 千㎡ OA紙(A4換算) 10,486 千枚

A+B 全体のインプット

再生可能エネルギー

太陽光発電 66.2 干kWh マイクロ水力発電 4,487.6 干kWh

エネルギー

電気	144,814.8	于kWl
都市ガス	1,980.6	千㎡
LPガス	0.3	千㎡
灯油	0.0	kL
A重油	40.4	kL
ガソリン	0.00	kL
軽油	0.5	kL

車両使用(船舶含む)		
ガソリン	63.8	kL
軽油	1.0	kL
天然ガス	2.1	千㎡
OA紙(A4換算)	11,908	千枚

※薬品は浄・給水場のみで使用しています。

給水量 319,280,046㎡

浄水処理し、浄水場から送り出した水量

給水場

送られてきた浄水を貯留 し、家庭等へ配水する。

ろ過池

浄水場全体を 管理する。

さらにきれい にするため、 砂の層を通し てこす。

配水池

浄水を貯留

し、送・配水

量の時間変動

を調整する。

送水ポンプ

浄水を給水 場、配水塔等 に送水する。

有効水量 313,685,426㎡

漏水量などを除いた、有効に使われた水量

D 庁舎におけるアウトプット

 CO_2 1,316.1 t-CO₂ NO_X 0.9 t SO_X 0.1 t

一般廃棄物 54.3 t OUTPUT

C+D 全体のアウトプット

CO 2 76,722.6 t-CO₂ NO_X 18.5 t 7.3 t SO_X 浄水発生土量 19,016 t 19,016 t) (再資源化量

一般廃棄物 76.8 t

浄水発生土以外の

125.2 t 産業廃棄物

(水質センターを含む)

