産業支援技術研究所課題評価専門部会

平成20年度課題評価結果報告

平成20年9月

産業支援技術研究所課題評価専門部会

千葉県産業支援技術研究所は，地域経済の発展を目指すため，地域産業，地域社会が抱える技術的課題の解決に取り組み，食品，バイオ，機械•金属等の県内中小企業の活性化，ベンチャー企業の創出•育成，産学官連携による新産業の創出を図る機関です。そのために様々なニーズに対応した，研究•開発，技術相談•支援，依頼試験，技術情報の提供，人材育成等の支援を行っており，特に研究においては千葉県内の主に工業分野に係る課題に取り組んでおります。

当専門部会は，千葉県の公設試験研究機関を評価する千葉県試験研究機関評価委員会の下部組織として設置され，毎年，産業支援技術研究所が行ら研究課題について，より効果的な研究が行われるよう専門的な見地から意見を交わし，評価しております。

今年度は，産業支援技術研究所内部評価委員会において 20 の研究課題が審議され，そのうち産業界等の必要性，本県の施策上の必要性，産業振興上の必要性等の観点から重要性が高いと認められた重点課題 6 課題（事前評価 1 課題，事後評価5課題）について，研究所の直接の担当者から説明を聴取し，評価を行い，その結果をとりまとめました。

この報告書が，産業支援技術研究所の研究活動をより充実させ，成果を収め ることによって，県内中小企業の新製品•新技術の開発の促進，中小企業の発展に役立てていただければ幸いです。

平成 20 年 9 月

産業支援技術研究所課題評価専門部会 部会長 間島 保

目 次

1 産業支援技術研究所課題評価専門部会 部会構成員名簿 $\cdot 1$
2 課題評価結果
（1）総括 － 2
（2）事前評価
（1）放電プラズマ焼結法を用いた安価な金属と二酸化チタンによる複合光触媒の開発5
（3）事後評価
（1）ロボット応用技術に関する研究 10
（2）麹菌ゲノム解析情報を利用した応用研究 14
（3）T－RFLP 法による複合微生物群集解析方法の開発 19
（4）近傍界ノイズ抑制シートの開発 23
（5）伝統的醤油醸造技術から生まれる粕を出さない 新発想の醤油様調味料開発とその活用 29
3 産業支援技術研究所課題評価専門部会開催日 33

区分	所属•役職	氏	名
部会長	千葉大学 大学院工学研究科•教授	間島	保
部 会 構成員	東京大学 大学院農学生命科学研究科•教授	中西	友子
部 会 構成員	株式会社ドゥリサーチ研究所 代表取締役社長	西尾	治一
部 会 構成員	J F E テクノリサーチ株式会社 主席研究員	松山	隼也
部 会 構成員	キッコーマン株式会社 顧問	菊地	護

2 課題評価結果

（1）総 括
産業支援技術研究所は，中小企業の活性化，ベンチャー企業の創出•育成，産学官連携による新産業の創出等を目的として，研究開発，技術相談•支援，依頼試験，技術情報等の提供，人材育成等を通じて，中小企業の技術開発等の支援を行っている。

課題評価専門部会では，県民ニーズを踏まえた研究であるか，研究計画 が適切であるか，また，研究資源について妥当であるかという観点から，産業支援技術研究所の全研究課題のうち重点課題とされた事前評価 1 課題，事後評価5課題について評価を実施した。

評価結果として，事前評価1課題については採択した方がよい，事後評価3課題については計画どおり又はそれ以上の成果が得られた，2課題に ついては計画に近い成果が得られたと判断した。

なお，各課題の総合評価は，次表のとおりであり，各研究課題の評価項目ごとの所見•指摘事項を含む詳細については，次の課題評価票のとおり である。

区	研究課題名	総合評価
事 前 評 価 （1）	放電プラズマ焼結法を用いた安価な金属と二酸化チタンによる複合光触媒の開発	採択した方がよい。 （所見•指摘事項等） －県内企業からのニーズが高く，それに対応した研究開発であり，安価な金属を使用した素材開発 は，中小企業への応用が可能という面で評価でき る。 －この分野は，他の研究機関等で研究が先行して いることから，これまでの研究成果を検証のらえ，適用範囲など研究の焦点をきちんと絞ることが重要である。
事 後 評 価 （1）	ロボット応用技術に関 する研究	計画に近い成果が得られた。 （所見•指摘事項等） －企業の具体的ニーズがあるようなので，本研究 の最終的な目的が何か，研究のアウトプットを具体化する時期に来ていると思う。 －ロボット研究会や共同開発を通じて地域企業や研究機関とのネットワークができたことは評価で きるので，今後もこうした取り組みを積極的に行 なって欲しい。
事 後 評 価 （2）	麹菌ゲノム解析情報を利用した応用研究	計画に近い成果が得られた。 （所見•指摘事項等） －外部資金の導入により実施された研究成果が活用されているため，研究資源が十分妥当であった と解される。 －遺伝子組み換え技術の受諾条件が示される場合 に備え，中小企業に技術導入できるよう準備を進 めていくべきである。

区 分	研究課題名	総合評価
事 後 評 価 （3）	T－RFLP 法による複合微生物群集解析方法の開発	計画どおり又はそれ以上の成果が得られた。
		（所見•指摘事項等） －技術の確立とその応用が並行して実施されてお り，非常に効率的であったといえる。 －技術シーズの確立はほぼ達成されたが，菌種の同定等，より高い技術の確立が早急に望まれる。
事 後 評 価 （4）	近傍界ノイズ抑制シー トの開発	計画どおり又はそれ以上の成果が得られた。
		（所見•指摘事項等） － 3 GHz 以上の高周波についての効果が認めら れ，今後の電子製品の高周波化への対応が期待さ れる技術である。 －誘電体である山武杉木炭の有効性を検証するだ けでなく，各種木炭，及び木炭に近い他の誘電体 も含めて比較検討し，ノイズ抑制シートにおける山武杉木炭の有効性を相対的，定量的に検証する必要がある。
事	伝統的醤油醸造技術か	計画どおり又はそれ以上の成果が得られた。
後 評 価 （5）	ら生まれる粕を出さな い新発想の醤油様調味料開発とその活用	（所見•指摘事項等） －研究の発想は新規性に富んだものではないが，粕を出さない一つの手法として今回の試作品を作 り，市場ニーズを調査し，その可能性のポテンシ ヤルを図ったことに意味がある。 －今回開発した新規醤油様調味料の市場への受諾性を今後開発する企業とともに進め，千葉県発の地域資源として展開していただきたい。

平成 20 年度千葉県産業支援技術研究所課題評価調書（兼）評価票（事前評価）

		部会構成員氏名	
			間島 保
			西尾治一
			松山隼也
			菊地 護
		試験研究機関長名	三戸 茂
研究課題名	放電プラズマ焼結法を用いた安価な金属と二酸化チタンによる複合光触媒の開発	研究期間	平成 2 1～2 2 年度
研究の背景•目的	近年，環境に対する危機意識が高まるなか，環境を意識して様々な材料が開発されるようになってきた。そのよ らな環境調和材料の開発において，二酸化チタン $\left(\mathrm{TiO}_{2}\right)$ は大気中での安定性，安価，紫外線下での光触媒作用※ ${ }^{1}$ な どという面で大変注目されている材料ではあるが，更なる光触媒機能の高活性化が求められている。これまでに，高活性化のために金属との複合に関する研究は進められているが，白金や銀などの貴金属を使用しているために広範な使用が難しい。 本研究では実用面や広範な利用を考慮し，より安価な金属との複合化を行う。複合及び焼結固化成形には，放電 プラズマ焼結装置＊2（以下，SPSという。）を使用する。SPSを使用する理由は，以下のことが挙げられる。 （1）装置の特性として昇温速度が極めて速いため粒成長を制御可能であること （2）原料が粉末であるため容易に複合できること （3）多孔質体が作製できること そのようなことから，従来にはない高機能な光触媒材料を開発する。 ※ 1 光触媒作用 光触媒は光が当たると触媒作用（化学反応の速度を変えること）を発揮し，分解力と親水性の作用がある。 $※ 2$ 放電プラズマ焼結（Spark Plasma Sintering）装置 圧粉粒子間隙に直接パルス状の電気エネルギーを投入し，火花放電により瞬時に発生する高温プラズマの高エネ ルギーを熱拡散•電解拡散など効果的に利用する焼結法。		
研究計画の概要	酸化チタンは一般には微粉末状であり，工業材料の製造工程において多くの場合，薄膜にして利用されることが多い。薄膜であるため耐久性に難があり，剥離の問題がある。例えば，現在，光触媒を用いた空気浄化装置のフィ ルター部分には，セラミックス多孔体（その多くはアルミナ ${ }^{3}$ ）を担体 ${ }^{*} 4$ として，その上に光触媒をコーティングし たものを使用している。このような部材には，酸化チタン自体のバルク体（多孔体）を作製した方が有利である。 省エネや環境浄化に期待が寄せられている光触媒について，本研究ではSPSにより金属と TiO_{2} との複合光触媒を作製し，実用面を考慮したより安価な金属との複合化と，より環境浄化機能の高い工業製品への適応を考慮した光触媒を作製する。 ※3 アルミナ セラミックス材料の一つであり，アルミニウムの酸化物。 ※ 4 担体 吸着や触媒活性を示す物質を固定する土台となる物質。		

㗐			

評 価 項 目 ＜評価視点＞	説 明	所見•指摘事項等	$\begin{aligned} & \begin{array}{l} \text { 評価 } \\ \text { 区分 } \end{array} \end{aligned}$
4．研究成果の波及効果及び発展性 ＜評価視点＞ －研究成果が試験研究機関 の関係する分野に及ぼす影響は大きいか。また，将来 の発展性があるか。	環境省から発表された2020年頃の環境ビジネス予測市場58兆円の中で，光触媒関連は3兆9千億円と見込まれて おり，さほど大規模な生産設備が必要ないことからも中小企業者が比較的容易に参入できる分野である。 そのため，当該研究による成果が得られれば，環境負荷低減に一翼を担うとともに，企業に対しては，付加価値ある製品開発を促すことができる。	－研究が成功し，生産技術の革新が生まれた場合 には，県内中小企業の新たな付加価値を生む製品作りに寄与できるとともに，環境負荷の低減にも役立ち，色々な場面での利用が考えられる。 －光触媒関連のどの分野に応用可能であり，どれ だけ環境負荷低減に役立つかが不明である。	$\begin{aligned} & \text { a. 高い } \\ & \text { b. 㚣当 } \\ & \text { c. 低い } \end{aligned}$
5．その他		－素材開発であることからリスクは伴らが，トラ イする意味はある。 －本テーマに限らず，親テーマに付随する複数の サブテーマを進める場合，相互の関係を明確に表 す，例えばテーマツリーやマイルストーンの形で整理することが望まれる。	
総合評価		－県内企業からのニーズが高く，それに対応した研究開発であり，安価な金属を使用した素材開発 は，中小企業への応用が可能という面で評価でき る。 －この分野は，他の研究機関等で研究が先行して いることから，これまでの研究成果を検証のら え，適用範囲など研究の焦点をきちんと絞ること が重要である。	a b c
※ 総合評価の評価区分については，次のとおりです。 a．採択した方がよい。 b．部分的に検討する必要がある。 c．採択すべきでない。			

平成 20 年度千葉県産業支援技術研究所課題評価調書（兼）評価票（事後評価）

需 藘					

					㬈•緛建䋛㪀 解要一儿 ふ害ハ 些心世 道抑N 运 ，人搂 渨约 がいた 荅俷澴』 			
血								

$\begin{gathered} \text { 評 } \begin{array}{c} \text { 価 項 } \\ <\text { 目 } \\ <\text { 評価視点 }> \end{array} \\ \hline \end{gathered}$	説 明	所見•指摘事項等	$\begin{aligned} & \begin{array}{l} \text { 評価 } \\ \text { 区分 } \end{array} \end{aligned}$
4．当初の研究目的以外の研究成果	－ロボット研究会参加企業が千葉県新産業創造開発費補助金に採択され，当研究所と産官連携で共同研究を行 った。この共同研究では，野波研究室との共同研究で得た制御技術の知見が大変役に立つた。 －当研究において試作に協力した企業が，双腕ロボット の試作をとおしロボットアームの設計技術を蓄積した。 この技術を基に，ロボットアームの試作を受注した。	－ロボット研究会や共同開発を通じて地域企業や研究機関とのネットワークができたことは評価で きるので，今後もこうした取り組みを積極的に行 なって欲しい。	$\begin{aligned} & \text { a. 高い } \\ & \text { b. 妥当 } \\ & \text { c. 低い } \end{aligned}$
5．その他			
総合評価		－企業の具体的ニーズがあるようなので，本研究 の最終的な目的が何か，研究のアウトプットを具体化する時期に来ていると思う。 －ロボット研究会や共同開発を通じて地域企業や研究機関とのネットワークができたことは評価で きるので，今後もこうした取り組みを積極的に行 なって欲しい。	
※ 総合評価の評価区分については，次のとおりです。			
a．計画どおり又はそれ以上の成果が得られた。 b．計画に近い成果が得られた。 c．成果が得られなかった。			

$\begin{array}{\|l\|} \hline \\ \text { 遇 } \\ \text { 減 } \\ \hline \end{array}$				
品 湯				

$\begin{aligned} & \text { 異众 } \\ & \hline \end{aligned}$			
感			

$\begin{gathered} \text { 評 価 項 目 } \\ \ll \text { 評価視点 }> \\ \hline \end{gathered}$	説 明	所見•指摘事項等	$\begin{array}{\|l\|} \hline \text { 評価 } \\ \text { 区分 } \end{array}$
5．その他			
総合評価		－外部資金の導入により実施された研究成果が活用されているため，研究資源が十分妥当であった と解される。 －遺伝子組み換え技術の受諾条件が示される場合 に備え，中小企業に技術導入できるよう準備を進 めていくべきである。	

※ 総合評価の評価区分については，次のとおりです。
a．計画どおり又はそれ以上の成果が得られた。
b．計画に近い成果が得られた。
c．成果が得られなかた。
平成 20 年度千葉県産業支援技術研究所課題評価調書（兼）評価票（事後評価）

$\begin{array}{\|l\|} \hline \text { 送众 } \\ \text { 道区 } \\ \hline \end{array}$					
盡		 边造 ＊雬范 ぶ د人意和朔一欴 $x+6$先㽧人齐 ヘぶ檪 ※			

評 価 項 目 $<$ 評価視点 $>$	説 明	所見•指摘事項等	$\begin{array}{\|l\|} \hline \text { 評価 } \\ \text { 区分 } \end{array}$
4．当初の研究目的以外の研究成果	当初の目標は，技術シーズの確立であったが，県内企業の技術相談に対応してより企業ニーズに近い研究を実施することができ，当該企業の技術的レベルアップに寄与することができた。	－現実の企業ニーズに応えられたことは大きい。	$\frac{\text { a. 高い }}{\text { b. 妥当 }}$ c．低い
5．その他		－新規知見に関する知的財産権の取得及びその移転について，戦略的に検討が必要である。	
総合評価		－技術の確立とその応用が並行して実施されてお り，非常に効率的であったといえる。 －技術シーズの確立はほぼ達成されたが，菌種の同定等，より高い技術の確立が早急に望まれる。	

※ 総合評価の評価区分については，次のとおりです
平成 20 年度千葉県産業支援技術研究所課題評価調書（兼）評価票（事後評価）

		鄦 6 N叫小⿺ 今樎 道 㓎 妆苞 国 ${ }^{1+}$ 亲省 ，整 㪀 Ns $\rightarrow+8$ 的 鮊造 水愈 为 䅡 C 5 肴《畼 滑後へ －叫形	SNoN 験 く H H S上世へ汹 1 务，近 要临以检穷 6 N云 ＂ 4×6 ーK趩－い人心的宏 6和造号 兴名原感稍退品畑二給䆓原 NだNN虾兴－眖 K，人 6 迷思 トセ＋
県			

需 踀		 蔵分要 	

\begin{tabular}{|c|c|c|}
\hline $$
\begin{array}{|l|}
\hline \\
\hline \text { 逪昷 } \\
\hline
\end{array}
$$ \& \&

\hline \& \&

\hline 監

哏 \& \&

\hline \& \&

\hline
\end{tabular}

血			
			¢

$\begin{gathered} \hline \text { 評 価 項 目 } \\ <\text { 評価視点 }> \\ \hline \end{gathered}$	説 明	所見•指摘事項等	$\begin{aligned} & \begin{array}{l} \text { 評価 } \\ \text { 区分 } \end{array} \\ & \hline \end{aligned}$
総合評価		－3 G H z 以上の高周波についての効果が認めら れ，今後の電子製品の高周波化への対応が期待さ れる技術である。 －誘電体である山武杉木炭の有効性を検証するだ けでなく，各種木炭，及び木炭に近い他の誘電体 も含めて比較検討し，ノイズ抑制シートにおける山武杉木炭の有効性を相対的，定量的に検証する必要がある	

[^0]a．計画どおり又はそれ以上の成果が得られた。
b．計画に近い成果が得られた。
c．成果が得られなかった。

\begin{tabular}{|c|c|c|}
\hline \& \&

\hline \& \&

\hline 罢

湿 \& \&

\hline \& \&

\hline
\end{tabular}

$\begin{gathered} \hline \text { 評 価 項 目 } \\ <\text { 評価視点 }> \end{gathered}$	説 明	所見•指摘事項等	$\begin{array}{\|l\|} \hline \text { 評価 } \\ \text { 区分 } \end{array}$
4．当初の研究目的以外の研究成果	「もろみ醤」を製作する高圧ホモジナイザーは，処理能力が高く高粘性の材料ほど圧送する必要があるため挿入方法を検討し，この改善策を製品開発に生かした。 別の課題である「粕を出さない醤油の製造方法」と連携がとれ製品化に近づいた。	－様々な課題を持つ企業とグループを形成し研究 を実施した点は高く評価できる。 －具体的な商品を見据えたことで生産技術に波及 している。	$\begin{aligned} & \text { a. 高 } \\ & \hline \text { b. 䓜当 } \\ & \text { c. 低い } \end{aligned}$
5．その他		－伝統的手法に基づく公知の技術であるが，新規用途への適用で知的財産の発現可能性があるので留意が必要。	
総合評価		－研究の発想は新規性に富んだものではないが，粕を出さない一つの手法として今回の試作品を作 り，市場ニーズを調査し，その可能性のポテン シャルを図ったことに意味がある。 －今回開発した新規醤油様調味料の市場への受諾性を今後開発する企業とともに進め，千葉県発の地域資源として展開していただきたい。	$\underset{\substack{a \\ c \\ c}}{a}$
※ 総合評価の評価区分については，次のとおりです。 a．計画どおり又はそれ以上の成果が得られた。 b．計画に近い成果が得られた。 c．成果が得られなかった。			

3 産業支援技術研究所課題評価専門部会開催日

＜第1回＞
1 日 時 平成20年8月7日（木）13：0 0～16：50

2 場 所 産業支援技術研究所（加曽利庁舎）

3 出席者
（専門部会）

部会長	間島	保
構成員	西尾	治一
構成員	松山	隼也
構成員	菊地	護

（千葉県）
産業支援技術研究所 三戸所長，興津次長，加藤次長ほか
商工労働部
中島次長，田仲副課長（兼）産業技術室長ほか

4 内 容
（1）産業支援技術研究所の概要について
（2）平成19年度課題評価結果に対するフォローアップについて
（3）平成 20 年度研究課題評価対象課題の選定について
（4）平成20年度研究課題評価について

[^0]: 総合評価の評価区分については，次のとおりです。
 $※$

