DNAマイクロアレイ関連技術の開発 (第2報)

バイオ応用室岡 千寿,前田 浩千葉大学 真菌医学研究センター 五ノ井 透,三上 襄

Technological Development of Methods for DNA Microarray (2nd report)

Chitoshi OKA¹⁾ and Hiroshi MAEDA^{1),2)} Tohru GONOI³⁾ and Yuzuru MIKAMI³⁾

¹Chiba Industrial Technology Research Institute ²Graduate School of Agricultural Science, Tohoku University ³Medical Mycology Research Center, Chiba University

DNAマイクロアレイは、網羅的な遺伝子の発現解析や変異、多型性などの同時解析に用いられており、ポストゲノム解析の強力なツールの1つである。しかしながら、このDNAマイクロアレイは高価であり、通常は、1回の解析実験で使い捨てられている。

今回我々は、DLCコーティング・スライドを用いたDNAマイクロアレイにおいて、蛍光ラ ベル化cDNAをハイブリダイズした後、アレイ・スライドにゼラチンやトレハロースの被膜 を形成し、蛍光を検出した後、ハイブリダイズしていた蛍光DNAを完全に除去できること、 さらにこのアレイ・スライドに、蛍光ラベル化cDNAが再度、ハイブリダイズできることを 見い出した。この技術によりDNAマイクロアレイの再使用が可能となり、解析実験コスト の大幅な削減が可能になると考えられる。

1. はじめに

DNAマイクロアレイは、スライドガラス等の基 板に特異的なポリヌクレオチドを多数整列固定化 させたものであり、網羅的な遺伝子の発現解析や 変異、多型性などの同時解析に非常に有用である。 このDNAマイクロアレイを用いた遺伝子情報の解 析は、創薬研究、疾病の診断や予防法の開発など に極めて有用であるため、DNAマイクロアレイの 作製技術、及び得られたデータの解析システムの より一層の開発が望まれている。

また、一般的にDNAマイクロアレイは高価であ ることから、蛍光ラベル化DNAをマイクロアレイ に固定化したオリゴヌクレオチドとハイブリダイ ズさせて解析した後、蛍光ラベル化DNAを除去し てマイクロアレイを再生し、再利用することが出 来れば解析コストの大幅な低減が可能となるが、 従来の方法では不可能とされてきた。

本研究では、蛍光ラベル化cDNAをマイクロアレ イとハイブリダイズした後、非蛍光性被膜を形成 させるという新たな発想により、アレイスキャナ ーで蛍光を検出後、ハイブリダイズした蛍光ラベ ル化cDNAを完全に除去することで、DNAマイクロ アレイの再利用を可能とする技術を開発したので その概要を報告する。本実験の概略を図1に示す。

図1 今回の実験の概略

2. 実験方法

2.1 DNAマイクロアレイの作製

YPD液体培地(富栄養培地)における培養で発 現することが確認されている30種類のAspergillus oryzaeの遺伝子¹⁰を選択し,これらの遺伝子に特 異的な60塩基長のオリゴヌクレオチドを合成した。 また,ポジティブ・コントロールとしてヒストン 遺伝子を,スポッティング・コントロールとして Cy3ラベル化オリゴDNAを用いた。これらのオリゴ ヌクレオチドを化学的共有結合でDLCコーティン グ・スライドに固定化することによりDNAマイク ロアレイを作製した。DNAマイクロアレイの配置 図を図2に示す。



図2 実験に用いたマイクロアレイの配置図

2.2 蛍光ラベル化cDNAの調製

A. oryzae RIB40 株をYPD液体培地で培養した 菌体からmRNAを調製し, CyScribe First-Strand cDNA Labelling Kit (GE ヘルスケア バイオサイ エンス社製)を用い, Cy3蛍光ラベル化cDNAを合成 した。

2.3 ハイブリダイゼーション,及び洗浄

Cy3蛍光ラベル化cDNAを5×SSC/0.5%SDSに溶解し, ハイブリダイゼーション溶液とした。ハイブリダ イゼーションは、60℃で16時間行い,その後の洗 浄操作は,以下のように行った。アレイ・スライ ドを2×SSC/0.2%SDSに浸漬してカバーグラスを洗 い落とし,2×SSC/0.2%SDSで15分間洗浄した。こ れを 2×SSCで洗浄し,300rpmで,3分間遠心しア レイ・スライド表面の水分を除去した。

2.4 ゼラチンによる被膜形成

蛍光ラベル化cDNAとハイブリダイズし,洗浄し たアレイ・スライドをあらかじめ50~60℃に加温 して溶解しておいた0.2×SSC/1mM EDTA/1.5%(W/V) ゼラチンに浸漬し,ただちに300rpmで,3分間遠 心を行い,室温で遮光してゼラチンをゲル化した。

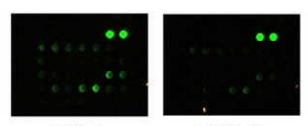
2.5 トレハロースによる被膜形成

蛍光ラベル化cDNAとハイブリダイズし,洗浄し たアレイ・スライドを2×SSC/20%(W/V)トレハロー ス溶液に浸漬し,ただちに300rpmで,3分間遠心 を行い,室温で遮光して放置した。

2.6 蛍光の測定,及び蛍光強度の数値化

アレイ・スライド上のオリゴヌクレオチドにハ イブリダイズしたcDNAの蛍光をマイクロアレイ・ スキャナー GeneTAC UC-4(Genomic Solutions社 製) で測定した。蛍光強度の数値化は,解析ソフ ト ScanAlyze ver.2.50 (http://rana.lbl.gov/ EisenSoftware.htm)を使用した。

2.7 蛍光ラベル化cDNAの除去

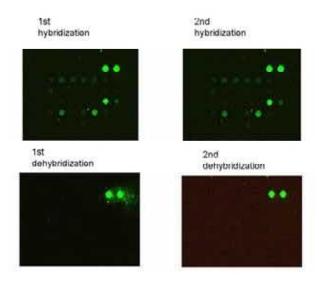

50mL容の耐熱チューブに入れた超純水を湯浴上 で加熱したものをあらかじめ準備し, 蛍光強度を 測定したアレイ・スライドをこの超純水に浸漬し て洗浄した。この操作によりアレイ・スライド上 のオリゴヌクレオチドにハイブリダイズした蛍光 ラベル化cDNAを除去した。

本稿では,この操作をデハイブリダイゼション (Dehybridization あるいは Dehybri) と呼ぶこ とにする。

3. 結果及び考察

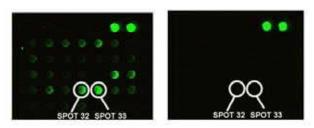
3.1 ゼラチン被膜の効果

従来の方法で処理した対照実験については、ア レイ・スライドからの蛍光ラベル化cDNAのデハイ ブリダイゼーション後に蛍光ラベル化cDNAの残存 が観察され、アレイ・スライドの再生操作として は不十分であった(図3)。



Hybridization

Dehybridization


図3 対照実験のアレイ画像

それに対して、ゼラチンによる被膜形成を行っ たアレイ・スライドは、蛍光ラベル化cDNAのデハ イブリダイゼーションにより、アレイ・スライド にハイブリダイズした蛍光ラベル化cDNAがほぼ完 全に除去されていた。さらに、このアレイ・スラ イドを用いて2度目のハイブリダイゼーションを 行ったところ,蛍光ラベル化cDNAがアレイ・スラ イド上のオリゴヌクレオチドに再度,ハイブリダ イズすることも確認された(図4)。

図4 ゼラチン被膜実験のアレイ画像

1st hybridization 1st dehybridization

図5 グラフ化したスポット

これらの結果をScanAlyzeにより数値化して, 図5におけるSPOT32,及びSPOT33について蛍光強 度をグラフ化したものを図6,図7に示す。

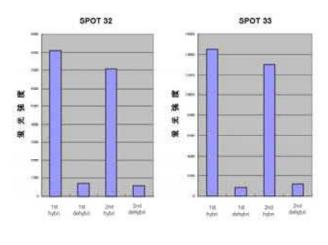


図6 対照実験の蛍光強度

ゼラチン被膜実験では、蛍光ラベル化cDNAのデ ハイブリダイゼーションによりアレイ・スライド 上のオリゴヌクレオチドにハイブリダイズしてい た蛍光がほぼ完全に取り除かれていることが確認 された(図7)。

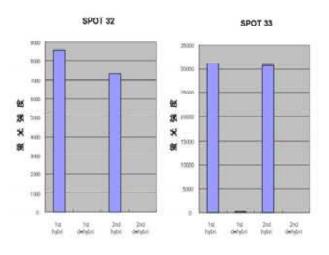
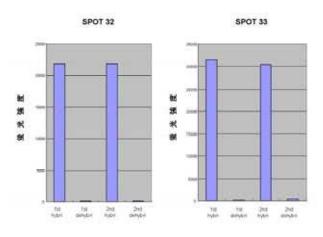
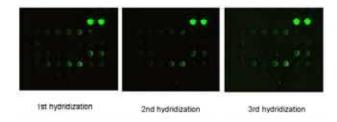


図7 ゼラチン被膜実験の蛍光強度


3.2 トレハロース被膜の効果

ゼラチン被膜と同様にトレハロース被膜を用い ても同様の効果があり,ゼラチン被膜より良好な 結果が得られることを確認した。


図8 トレハロース被膜実験のアレイ画像

トレハロースで被膜を形成したものでは、蛍光 ラベル化cDNAのデハイブリダイゼーション後に、 ほとんど蛍光が検出されず、また、2回目のハイ ブリダイゼーションの蛍光強度も良好であった (図8)。 トレハロース被膜実験の結果について蛍光強度 を数値化し,SP0T32,及びSP0T33(図5参照)の 蛍光強度をグラフ化したものを図9に示す。

図9 トレハロース被膜実験の蛍光強度

トレハロースを用いて被膜を形成する実験では、 同一のアレイ・スライドを用いて3回の繰り返し 実験を行い、再使用が可能であるかどうかを検討 した。この実験のアレイのスキャン画像を図10 に示す。

図10 3回の再使用におけるアレイ画像

アレイ・スライド再使用の可能性を数値的に検 討するため,図10に示したアレイ・イメージか ら蛍光強度の強い10個のスポットについて,相対 蛍光強度の平均値と標準偏差をグラフ化したもの を図11に示す。

図11のグラフからも明らかなように、トレハ ロースで被膜を形成することにより、従来、不可 能とされてきたDNAマイクロアレイの再使用が十 分可能であると思われた。この技術は、従来高価 であるマイクロアレイを用いた実験の大幅なコス ト削減に役立つと考えられる。

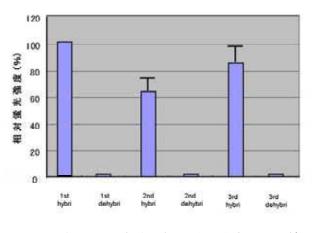


図11 繰り返し実験の相対蛍光強度の平均値

4. まとめ

従来の多くのマイクロアレイ・スライドでは, DNA結合後の再使用は出来なかったが,オリゴヌ クレオチドを強固に結合することができるDLCコ ーティング・スライドを用いてアレイ・スライド を調製し,さらにゼラチンやトレハロース等で被 膜を形成させることにより,アレイ・スライドを 複数回,再使用できることを確認した。

本研究を進めるにあたり,ご指導,ご鞭撻を賜 りました(独)産業技術総合研究所の町田 雅之 先生,東北大学 大学院 農学研究科の五味 勝也 先生,阿部 敬悦先生に感謝申し上げます。また, 特許出願にあたり,ご指導を賜りました千葉大学 知的財産本部の高橋 昌義先生,本研究のコーデ ネーターとして終始ご尽力を賜りました当研究所 プロジェクト推進室(当時)の清水 三弘氏に深く 感謝申し上げます。

参考文献

Maeda H. *et al.*: *Appl. Microbiol. Biotechnol.* 65: 74-83 (2004)