第10章 地質環境

大地は大気や水とともに物質・エネルギー循環の構成要素のひとつであり、人間生活の面から見ても、農業の基盤であり、天然資源を保有し、保水及び地下水の形成を受け持ち、多様な生物の生態系の維持など重要な役割を担っている。特に、大地が沈下する地盤沈下は、低地帯化による洪水時の浸水被害の増大、抜け上がりや*不等沈下による建造物、ガス施設・水道施設への被害等、生活環境に様々な影響を与える。

地盤沈下は、進行が緩慢であるため被害が大き くなるまで公害として認識されにくいこと及び一 度発生すると回復が不可能に近いことなど他の公 害とは異なる側面を有している。

また、近年、産業の技術革新などに伴って新たな環境汚染が問題となってきており、特に、トリクロロエチレンなどの有機塩素系化合物による地下水汚染が県内各地で確認されている。このため県では、「水質汚濁防止法」、「千葉県地下水汚染防止対策指導要綱」に基づき、地下水の水質監視、事業者の指導、汚染確認地域での調査・除去対策など、市町村と協力して各種の対策を実施している。

一方、土壌汚染については、従来から、農用地の 土壌汚染防止を中心とした各種の対策が行われて きているが、3年8月の「土壌の汚染に係る環境基 準」の設定及び6年2月の同基準の拡充、更に国か ら示された土壌汚染に関する調査・対策の指針に より、県としても、土壌汚染の実態把握に努めると ともに、「千葉県環境保全条例」において事業者の 土壌汚染防止措置義務を定めるなどの取組を実施 している。

さらに15年2月、「土壌汚染対策法」が施行されたことから、同法の的確な運用を図っていく。

第1節 地盤沈下の現状と対策

1. 地盤沈下の状況

一般的に地盤沈下は、地下水の過剰採取、天然ガスかん水の採取、構造物等による*圧密、*沖積層の自然圧密等が原因となって引き起こされる。

地下水は生活用水、工業用水、農業用水などとして容易かつ安価に採取できるため、生活水準の向上、各種産業の発展等による水需要の増大や深井戸さく井技術の発達に伴って大量の地下水が採取されるようになり、大きな地盤沈下が発生してきたが、本県の場合は地下水採取の他、天然ガスかん水の採取が主な原因となっている。

(1) 地盤沈下の推移

地域別に地盤沈下の推移を見ると、東葛、葛南、 千葉・市原、君津地域では、急激な産業の発展、人 口の増加に伴う地下水の採取量や天然ガスかん水 採取量の増加により、一時は年間20cmを超える沈 下地域が出現するに至ったが、法・条例及び協定等 による地下水及び天然ガスかん水の採取規制・指 導の効果があらわれ、一部の地域においては、沈下 が継続しているものの、全体的には沈静化の傾向 を示している。

北総地域では、51年から*水準測量を実施しているが、近年の地下水採取量が減少傾向にある中、一部地域で地盤沈下が継続しており、一部地域では2cm以上の沈下が見られる。

九十九里地域では、48年までは毎年10 cm前後沈下していた。このため、48年、天然ガスかん水の採取に係る地盤沈下対策として、天然ガス採取企業と天然ガス井戸の削減を骨子とする地盤沈下防止協定を締結した。また、56年からは、天然ガスかん水の地上排水量の削減を骨子とする協定に全面改定し、天然ガスかん水の地上排水量の削減等が行われたため、沈下量は減少した。しかし、広範囲の沈下が継続しており、一部地域では年間3cm程度の沈下が見られる。

なお、主要地点の経年地盤変動状況は図 2-10-1 のとおりである。

(2) 地盤沈下の状況

14年度の調査地域では、地盤沈下面積は、前年 度に比べ増加した(図2-10-2~3及び表2-10-1)。

14年度の変動量調査面積は2,900.0km²であり、このうち地盤沈下した地域の面積は、2,804.6km²と前年度1,949.7km²に比べ増加した。

また、地盤変動量別面積で見ると、2 cm未満の地盤沈下面積は、2,348.4km²で前年度1,922.7km²に比べ増加した。

沈下量 2cm以上 4cm未満の地盤沈下面積は、 456. 2km²で、前年度 27. 0km²に比べ増加した。

また、前年度同様、沈下量4cm以上の地盤沈下地域は見られなかった。

なお、地盤沈下の見られなかった地域の面積は 95.4km²で、前年度の950.3km²に比べて減少した。

本年度の県内最大地盤沈下地点は、九十九里地域の山武町植草(SN-10水準点)で沈下量は3.3 cmであった。

ア 東葛地域

沈下面積は、341.8km²であり、前年度(226.7km²) に比べ増加した。

沈下量2cm以上の地盤沈下は、見られなかった。 本地域の最大地盤沈下地点は、沈下量1.7cmの野田市山崎(ND-20水準点)であった。

イ 葛南地域

地盤沈下の面積は、252.7km²であり、前年度(115.3km²)に比べ増加した。

沈下量2cm以上の地盤沈下は、市川市で1.4km²

(前年度 0.1km²) にわたり見られた。

本地域の最大地盤沈下地点は、沈下量2.6cmの船橋市高根台(F-34水準点)であった。

ウ 千葉・市原地域

地盤沈下の面積は、566.4km²であり、前年度(392.6km²)に比べ増加した。

沈下量2cm以上の地盤沈下は、成田市、富里市、 八街市で56.8km²(前年度0km²)にわたり見られた。

本地域の最大地盤沈下地点は、沈下量2.2cmの長柄町山之郷(NGR-8水準点)であった。

工 君津地域

地盤沈下の面積は242.7km²であり、前年度(170.0km²)に比べ増加した。

沈下量2cm以上の地盤沈下は見られなかった。 本地域の最大地盤沈下地点は、沈下量0.9cmの君 津市君津(KM-9水準点)であった。

才 北総地域

地盤沈下の面積は610.7km²であり、前年度(347.6km²)に比べ増加した。

沈下量2cm以上の地盤沈下は、千葉市、長柄町で8.6km²(前年度0km²)にわたり見られた。

本地域の最大地盤沈下地点は、沈下量2.8cmの八 街市八街 (YM-5水準点) であった。

カ 九十九里地域

地盤沈下の面積は790.3km²であり、前年度(697.5km²)に比べ増加した。

沈下量2cm以上の地盤沈下は、旭市、八日市場 市、野栄町、光町、横芝町、松尾町、蓮沼村、成東

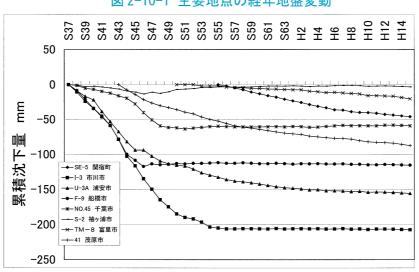
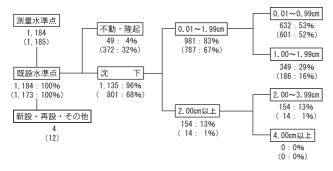


図 2-10-1 主要地点の経年地盤変動

(注)()は累計地盤沈下量(cm) 各年1月1日時点


表 2-10-1 地域別・地盤変動量別面積

(単位:km²)

					, , ,	·/. · IXIII /
変動量			地盤沈	下面積		地盤沈
地域	測量面積	2cm未満	2 cm以上 4 cm未満	4 ㎝以上	盐	下 が 見 ら れ な い地域
東葛	341.8	341.8	0.0	0.0	341.8	0.0
水 匃	(341. 8)	(226. 4)	(0.3)	(0.0)	(226. 7)	(115. 1)
葛 南	253. 9	251.3	1.4	0.0	252. 7	1. 2
葛南	(253. 9)	(115. 2)	(0.1)	(0.0)	(115. 3)	(138. 6)
工	570.8	557.8	8.6	0.0	566. 4	4. 4
千葉・市原	(570. 8)	(392. 6)	(0.0)	(0.0)	(392. 6)	(178. 2)
君津	246. 1	242. 7	0.0	0.0	242. 7	3. 4
4 件	(246. 1)	(170.0)	(0.0)	(0.0)	(170. 0)	(76. 1)
北総	610.7	553. 9	56.8	0.0	610.7	0.0
16 形心	(610. 7)	(347. 6)	(0.0)	(0.0)	(347. 6)	(263. 1)
九十九里	876. 7	400.9	389. 4	0.0	790. 3	86.4
加丁加里	(876. 7)	(670. 9)	(26. 6)	(0.0)	(697. 5)	(179. 2)
合 計	2, 900. 0	2, 348. 4	456. 2	0.0	2,804.6	95. 4
	(2, 900. 0)	(1, 922. 7)	(27. 0)	(0.0)	(1, 949. 7)	(950. 3)

(注) () 内は13年度

図 2-10-2 地盤変動量別·水準点数()内は13年度

町、山武町、東金市、九十九里町、大網白里町、白 子町、茂原市、長南町の4市11町1村にわたり 389.4km²で見られ前年度(26.6km²)に比べ増加し た。

本地域の最大地盤沈下地点は、沈下量3.3cmの山 武町植草(SN-10水準点)であった。

(3) 地下水揚水量の推移及び現状

県環境保全条例指定地域内では、50年以降、法・ 条例による地下水採取規則、公害防止協定等の地 下水採取削減指導により、地下水揚水量は経年的 には減少傾向にある(図2-10-4)。

14年の地下水揚水量は、約59万m3/日で、13 年の63万m3/日と比較し若干減少した。用途別に

図 2-10-4 県環境保全条例指定地域内の地下場

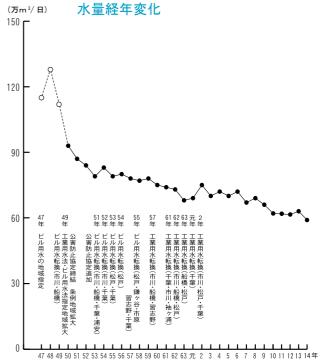


表 2-10-2 条例など指定地域内地下水揚水量 (平成14年) (単位: 千m3/日)

地	域	工業用	ビル用	水道用	農業用	その他	計	前年比
-		31. 5	5. 1	84. 3	31.8	3. 3	156.0	20
東	葛	(32. 5)	(5.8)	(83. 5)	(35.0)	(3.7)	(160.5)	0.97
-11 -		10. 3	1.5	57. 9	17.8	1.8	89. 4	0 05
葛	南	(13. 5)	(1.6)	(59. 3)	(17.8)	(1.7)	(93. 8)	0.95
イ故	中田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	17. 6	3.0	60. 7	52. 5	5. 3	139.0	00
千葉・	巾原	(18. 1)	(2.8)	(65. 4)	(62.6)	(7.5)	(156.4)	0.89
-	\# <u></u>	5. 5	2. 1	47. 5	23. 1	5. 3	83. 5	0.01
君	津	(5.4)	(2.6)	(49.8)	(27.5)	(6. 1)	(91. 4)	0. 91
-1L	4/1	13.8	5.6	78. 6	24. 1	3. 6	125. 7	0 00
北総	形心	(15. 0)	(6.5)	(79. 2)	(23. 7)	(3.3)	(127.7)	0. 98
合	計	78. 7	17.3	328. 9	149. 3	19. 3	593. 6	0.04
	ĦΤ	(84. 5)	(19.3)	(337. 2)	(166.7)	(22.3)	(629.8)	0.94

(注) 1.() 内は13年の揚水量

2. 揚水量は、年間揚水量を日平均に計算したものである。

3. 各地域の市町村名

北

葛 :野田市、柏市、流山市、松戸市、我孫子市、

沼南町、関宿町

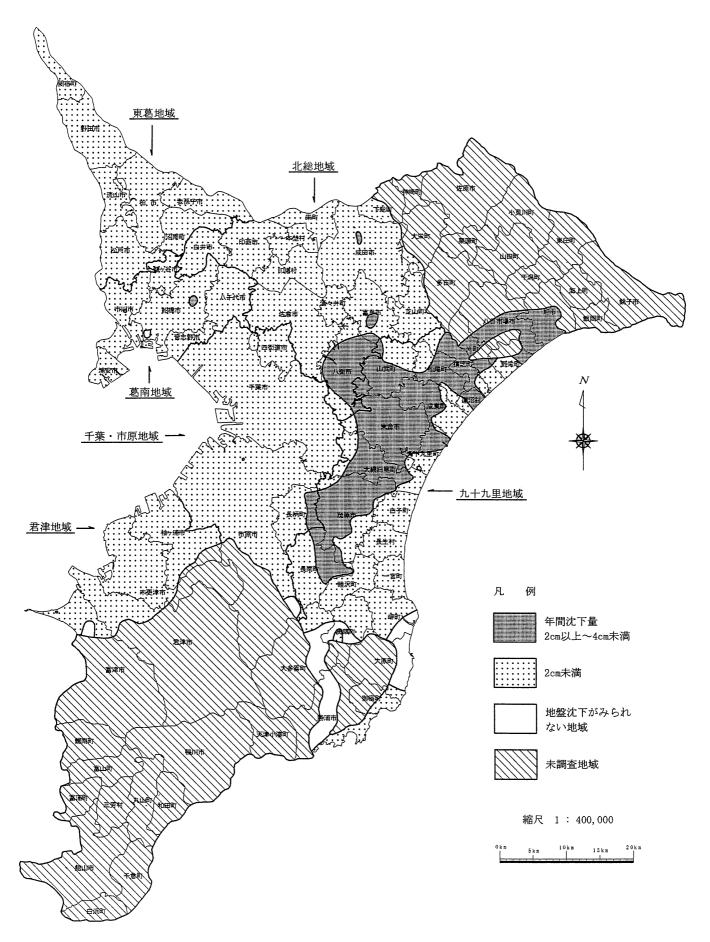
葛 南 :浦安市、市川市、船橋市、鎌ケ谷市、習志

野市、八千代市

: 千葉市、四街道市、市原市、長柄町 千葉・市原

津 : 木更津市、君津市、富津市、袖ヶ浦市

総 :成田市、佐倉市、八街市、印西市、白井市、


本埜村、栄町、富里市、酒々井町、下総町、

印旛村、山武町、芝山町

みると、水道用が全体の55%を占めている(表2- $10-2)_{0}$

なお、揚水量の多い市町村は、柏市、市原市、佐 倉市、八千代市、千葉市、成田市等である(市町村 別の地下水揚水量については資料編5の(5)参

図 2-10-3 千葉県水準基標変動図(1年間変動図)(14年1月~15年1月)

表 2-10-3 単位面積当たりの地下水揚水量 (14年における上位 10市町村)

(単位:m³/日/km²)

順位	市町村名	揚水量	順位	市町村名	揚水量
1	八千代市	947	6	我孫子市	471
2	柏 市	940	7	流山市	429
3	四街道市	882	8	関 宿 町	407
4	習志野市	812	9	酒々井町	402
5	佐 倉 市	471	10	野田市	298

表 2-10-4 地層変動量 (14年)

観測井名	井戸深度 (m)	変動量 (㎜)	観測井名	井戸深度(m)	変動量 (㎜)
野 田-2	150	- 0. 53	市 原一1	650	+ 0.10
我孫子-1	130	-1.30	袖ヶ浦-2	220	+ 0.67
市 川-2	200	+ 1.12	君 津一1	200	- 0.76
浦 安-1	60	-2.55	成 田-4	120	- 0.03
習志野-1	145	- 0.90	佐 倉-1	140	- 4.93
千 葉-1	480	-1.32	九十九里-4	60	- 0.40

- (注) 1. 井戸深度に対する変動量であり、変動量は+は膨潤したことを、-は収縮したことを示す。
 - 2. 千葉-1観測井:千葉市観測の値(提供)

照)。

また、単位面積当たりの揚水量の多い八千代市では、 1 km^2 当たり日量 950 m^3 程度の地下水を揚水している(表 2–10–3)。

(4) 地下水位等の変動状況

地下水は、雨水や河川水等の地下浸透により補給されるが、この浸透は極めて緩慢なため、補給量以上に地下水を採取すると地下水位が低下し、これに伴い地層が収縮し、地盤沈下が生じる。

このため、県では28市町村81か所に132井(うち*地盤沈下観測井を兼ねるもの53井)の観測井を 設置し、地下水位及び地層収縮量の観測を行っている。

ア 地下水位の変動状況

地下水位は、急激な都市化、工業化の発展とともに47年頃まで低下していたが、「工業用水法」を始めとする法令等に基づく地下水の採取規制及び表流水への転換等による効果があらわれ、徐々に上昇の傾向が見られており、千葉・市原地域を中心として自噴井も見られている(図 2-10-5)。

イ 地層の収縮

地盤沈下が地層のどの部分で生じているかを知

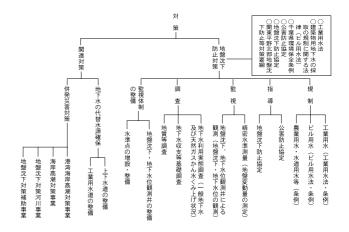
る手がかりを得るため、地盤沈下観測井による地層別の収縮量の観測を行っているが、14年1月から12月までの主な観測井における地表からの変動量は表 2-10-4に示すとおりである。

2. 地盤沈下防止対策

地盤沈下防止対策は、法律及び条例に基づく地下水採取規制等の地盤沈下防止対策と、地下水の代替水の供給事業及び地盤沈下に起因する併発災害の防止等いわゆる関連対策に分けられ、これらの諸対策の有機的な連携を図りながら、地盤沈下防止に努めている(図 2-10-6)。

(1)規制

地下水については、「工業用水法」、「建築物用地下水の採取の規制に関する法律」(以下「ビル用水法」という。)及び「千葉県環境保全条例」に基づいて、図2-10-7のとおり指定地域が定められ、工業用、建築物用(ビル用)、水道用及び農業用等の地下水の採取を規制している。


ア 工業用水法

「工業用水法」は、工業の用途に使用する地下水の採取を規制することを目的として31年に制定された。指定地域内の許可基準に適合しない揚水施設は、地下水の代替となる表流水を水源とする工業用水道が敷設された時点で転換することとされ、2年10月をもって指定地域全域での転換が完了した。

イ ビル用水法に基づく規制

「ビル用水法」は37年に制定され、建築物用の冷

図 2-10-6 地盤沈下防止対策体系図

図 2-10-5 地下水位変動状況図

(測定期間:平成10年~平成14年)

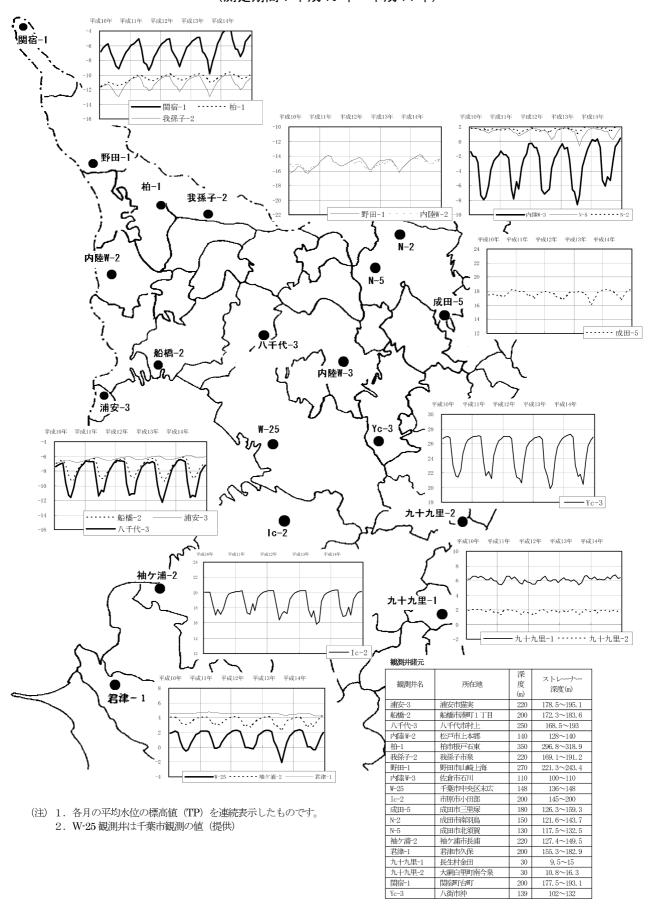
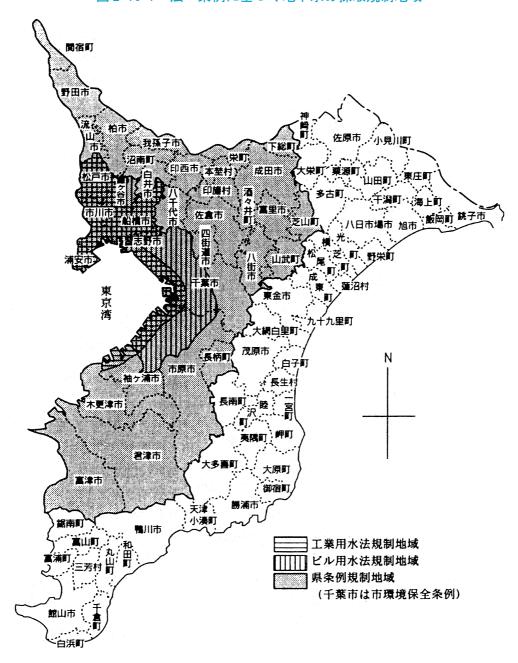



図 2-10-7 法・条例に基づく地下水の採取規制地域

暖房用及び水洗便所用等として使用する地下水採取を規制するものである。指定地域内においては、許可基準に適合しない揚水施設の設置を禁止するとともに、既存の揚水施設についても期日を限って上水道等に転換することとされ、55年12月末日をもって指定地域全域での転換が完了した。

ウ 千葉県環境保全条例に基づく規制

41年に「千葉県公害防止条例」を改正し新たに 地下水採取を規制して以来、45年、46年、49年と 遂次条例の改正を行い、規制の強化、指定地域の拡 大を図ってきた。

また、7年12月には「公害防止条例」を廃止し、

新たに「環境保全条例」を施行した。

なお、指定地域内では工業用、ビル用の地下水採取の規制のほか、上水道用、工業用水道用、農業用、鉱業用及びゴルフ場(10ha以上)の散水用に使用する地下水の採取を規制しており、許可基準に適合しない揚水施設の新たな設置が原則として禁止されている。

現在の指定地域は24市7町2村(33市町村・千葉市を含む)で、その面積は2,780km²と県全域の54%を占めている。

(2) 指導

ア 公害防止協定に基づく指導

現行法令では、既設の揚水施設について、工業用 水道及び上水道等の代替水源が敷設されるまでの 間地下水の採取ができることとなっているが、千 葉市、市原市及び袖ケ浦市の臨海工業地帯におい ては、地下水が大量に採取されていたことから、各 企業と地盤沈下の防止に係る細目協定を締結し、 地下水の採取を可能な限り削減するよう指導して きた。

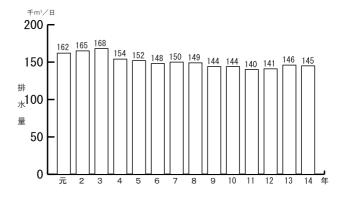
12年2月に細目協定を改定し、現在31社34工場と細目協定を締結している。

イ 地盤沈下防止協定に基づく指導

天然ガス採取については、地盤沈下に対する影響が大きいことから、48年に千葉地域及び九十九里地域の天然ガス採取企業10社と「地盤沈下防止協定」を締結し、天然ガス井戸の削減を指導してきた。その後、56年1月に協定の全面改定を行うとともに、成田地域の1社と新たに協定を締結した。

協定では、①開発地域ごとの地上排水限度量を 設定しその削減を図る。②新規のガス井戸につい ては市街地内や沈下が顕著な地域等では開発を認 めない等を内容とした細目協定を締結し、以後5 年ごとに細目協定を改定しており、12年度末の改 定においてさらにかん水地上排水量の削減を図っ ている。

14年度も、協定締結企業11社のうち天然ガスを 採取している9社について、「地盤沈下防止協定」 の遵守状況を確認するため、井戸稼働状況、水量測 定器の機能等の立入調査を実施した。


その結果は、208 基地を調査し、概ね良好な結果であったが、1 基地について水量測定器の不備が確認されたので、改善を指示した。

また、県下全域の天然ガスかん水の地上排水量は概ね減少傾向を示している(図2-10-8)。

ウ その他の指導

大規模な宅地造成等の開発の事前審査に際し、 地下水の保全を図るとともに地下水のかん養を促 進するため、透水性の高い舗装や浸透桝等の工法 の採用及び地下浸透しやすい芝地等の地区を設け

図 2-10-8 天然ガスかん水の地上排水量の経年変化

ること等を指導している。

(3) 監視

地盤沈下状況を広域的・立体的及び継続的に把握し的確な対策を進めるため、精密水準測量により地盤変動状況を、また、観測井により地下水位及び地層の収縮状況を監視している。

また、地盤沈下の調査研究用資料及び地質情報 提供等を目的とした「地質環境インフォメーショ ンバンク」を整備し、ホームページにより公開して その活用を図っている。

ア 地盤変動の監視

地盤変動の状況を監視するため、国土地理院の協力を得て35年から毎年精密水準測量を実施している。

14年度においては県下57市町村の1,188水準点 (測量面積2,900.0km²) にわたり実施した。

イ 地下水位及び地層の収縮状況の監視

地下水位及び地層収縮状況を監視するための観測井を設定し、14年度においては132井で測定を行った。

(4) 関連基盤整備対策

ア 地下水の代替水源の確保

県の水供給については、県内河川及び利根川水系の水源開発、水の有効利用促進など幅広い施策をとっているが、県内河川については本県の地形的制約から多くを望めず、主に利根川水系に依存せざるを得ない状況にある。

利根川水系の水源開発は、「利根川水系及び荒川 水系における水資源開発基本計画」に沿って実施 されているが、ダム等の水源開発施設の建設は、水 源地域対策の多様化や国の財政事情などにより長 期を要するため、県は国及び水源県に対して施設 の早期完成が図られるよう積極的な働きかけと協 力を行っているところである。

県では表流水の確保見込量を勘案しながら、上 水道及び工業用水道事業の整備を進めている。

(ア) 上水道の整備

本県の水道事業としては、地盤沈下防止と増加する水需要に対する長期安定水源としての表流水の確保が必要であり、計画的かつ効率的な水源確保とその有効利用を図るため水道の広域的整備を推進している。

この一環として、広域的な水道用水供給事業は、現在6事業が実施されている(表2-10-5)。 (イ)工業用水道の整備

県営工業用水道は、現在8地区が事業化されており、7地区が完成し1地区で一部給水を実施している(表2-10-6)。

これらの工業用水道事業は、工業開発に伴う 産業基盤の整備を図ることを目的とする一方、 地盤沈下の進行する地域には、地下水の代替水 源として表流水を供給する地盤沈下対策を目的 として整備が進められてきた。

葛南地区工業用水道事業は、本県で初めての 地盤沈下対策事業であり、15年4月1日現在は 約6.2万m³/日の工業用水を36社に供給してい る。また、東葛地区工業用水道事業も地盤沈下対 策事業として、5年度に完了し、約6.6万m³/ 日の工業用水を93社に供給しており、両地区と も地盤沈下防止に効果を発揮している。

イ 併発災害対策

(ア) 港湾海岸高潮対策事業

地盤沈下地域においては、高潮により大きな 被害が生じると考えられるので、高潮被害の防 止対策は、地下水汲上げ規制などの地盤沈下防 止対策と並んで重要である。

県内の港湾関係海岸7海岸(千葉港、木更津港、上総湊港、浜金谷港、館山港、興津港、名洗港)のうち地盤沈下の地域は、千葉港海岸と木更津港海岸である。

この2海岸は、背後に人口集中地域を有し、高

表 2-10-5 水道用水供給事業の計画

用水供給事業体	給水開始 年 月	供給先事業体	水源	計画一日 最大給水量
九十九里地域 水 道 企 業 団	52年7月	八匝水道、山武郡市広域水道 及び長生郡市広域市町村圏	利根川水系	194, 100
北千葉広域水道企業団	54年6月	千葉県営水道及U松戸市等 7市1町	利根川水系	534, 200
東総広域水道企業団	56年10月	銚子市等2市4町	利根川水系	45, 800
君 津 広 域水道企業団	55年7月	千葉県営水道及び木更津市 等4市	小櫃川水系	205, 000
印旛郡広域市町 村圏事務組合	57年12月	長門川水道及び成田市等6市 2町1村	利根川水系	166, 700
南房総広域水道企業団	H8年10月	三芳水道、朝夷水道及び鴨川市等 2市9町	利根川水系 夷隅川水系	55, 060

表 2-10-6 県営工業用水道事業の概要

地区名	給水区域	給水能力 (全体計画) m³/日	工期 (年度)	備考
東 葛	市川市、船橋市、松戸市、習志野市、千葉市の一部	80,000	$47 \sim 5$	地盤沈下対策
葛 南	市川市、船橋市、習志野市の一部	80,000	$41 \sim 46$	JJ
千 葉	千葉市、市原市、袖ヶ浦市の一部	125, 000	$42 \sim 49$	基盤整備事業
五井市原	市原市の一部	120,000	$34 \sim 39$	IJ
五井姉崎	佐倉市、市原市、袖ヶ浦市の一部	401, 760	$37 \sim 45$	IJ
房総臨海	千葉市、木更津市、佐倉市、市原市、 茂原市、袖ヶ浦市の一部	152,000 (416,000)	45~	JJ
木更津南部	木更津市、君津市、富津市の一部	206, 000	42~元	JJ
北 総	成田市、横芝町、芝山町の一部	1,600	4~5	11

潮時には浸水により大きな被害が予測されるため、水門及び排水機場等の整備を行っており、社会資本整備重点計画を16年度から実施することとしている(表 2-10-7)。

(イ) 地盤沈下対策河川事業

葛南地区(浦安市、市川市及び船橋市)は、地 形的に平坦であるため、過去の地盤沈下により ゼロメートル地帯が分布し、平常の満潮時や小 降雨によっても河川の流下が妨げられ、低地に ある工場・住宅等で浸水の被害が生じるおそれ がある。

このような地盤沈下による低地の内水排除を 行うため、河道等の整備を行っている(表2-10-8)。

(ウ) 地盤沈下対策補助事業

県内で地盤沈下が生じている地域の内水排水対策として関係市町村が実施する排水機場及び導水路の建設に対し、県は補助金を交付し、その促進を図っている(表 2-10-9)。

表 2-10-7 港湾海岸高潮対策事業の概要

[千葉港海岸]

(単位:百万円

[千葉港海岸]		(単位:百万円)
年 度	事業費	事業の概要
37 ~ 50	7, 141	水門19基、陸閘29基、 排水機場4基、防潮堤 16.9km
51 ~ 55 第2次海岸事業5か年計画	5, 211	水門(補強)7基、排水機場4基、防潮堤2.1km、防潮堤2km
56 ~ 60 第 3 次海岸事業 5 か年計画	5, 780	水門(補強)7基、排水機場4基、陸閘電動化10基、護岸補強80m
61 ~ 2 第4次海岸事業5か年計画	3, 380	排水機場 4 基、護岸補 強 956 m
3~7 第5次海岸事業5か年計画	2, 656	排水機場1基、護岸補 強120m、胸壁(嵩上) 123 m
8~14 第6次海岸事業7か年計画	3, 088	水門(補強)3基、陸閘(補強)15.2基、護岸(補強)435.8m、胸壁54.60 m
15 ~ 19 第7次海岸事業5か年計画	4, 743	護岸(補強)326.4m、排水機場0.3基、胸壁(補強)2,025m、陸閘(補強)7.3基、胸壁1,215m、陸閘3基、水門(補強)1基(検討中)

[木更津港海岸]

(単位:百万円)

【个史伴疮毋序】		(単位:自万円)
年 度	事業費	事業の概要
41 ~ 50	639	水門1基、防潮堤 4.5 km
51 ~ 55 第2次海岸事業5か年計画	624	水門 3 基、防潮堤 2.1 km、防潮堤補強 0.3 km
56 ~ 60 第3次海岸事業5か年計画	460	水門1基、排水機場1 基、護岸補強80 m
61 ~ 2 第4次海岸事業5か年計画	949	排水機場1基、護岸補 強1,230 m
3 ~ 7 第5次海岸事業5か年計画	903	護岸改良1,311 m、護 岸242 m
8~14 第6次海岸事業7か年計画	1,009	胸壁 (改良) 694.7 m、排水機場 0.19 基、水門 0.07 基
15 ~ 19 第7次海岸事業5か年計画	3, 237	排水機場0.8基、水門 0.9基 (検討中)

表 2-10-8 地盤沈下対策河川事業 (国庫補助)

(単位:百万円)

年 度	事業費	事業河川
46 ~ 14	20, 723	真間川、秣川、境川、猫実川、 海老川、堀江川、高谷川
15	20	境川

表 2-10-9 地盤沈下対策河川事業 (県費補助)

(単位:百万円)

年 度	事業費	事業河川		
43 ~ 14	5, 111. 65	浦安市、市川市、船橋市、一宮町、白子町、大網白里町、成東町、茂原市、小見川町、睦沢町		
15 (予定)	26. 25	小見川町、睦沢町		

表2-10-10 九十九里地域における湛水防除事業の概要

区 分	地域数		関係市町村	受益面積 (ha)	事業費(千円)		
完了地区	完了地区 19 地区		19 地区		3市11町2村	3, 615. 5	19, 282, 528
実施中 地 区	10 地区		2市8町2村	1, 448. 5	11, 838, 900 (うち14年度) 970, 000		
完了、実施中 関係市町村 (3市12町2村)				東町、東金市、 子町、茂原市、	九十九里町、		

(エ) 地盤沈下等への農林事業

九十九里地域で地盤沈下や上流域の開発行為により湛水被害等が生じている地域において排水機場や排水路等の修復事業を国、県、市町村の負担により県が実施している(表 2-10-10)。

第2節 地下水汚染の現状と対策

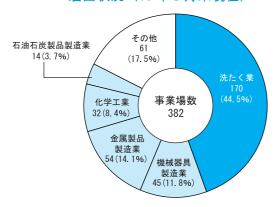
地下水は、水質が良好で比較的安定していること、水温の変化が少ないこと及び手軽に使用できることから、飲用はもとより、農業用水や工業用水として県民生活あるいは産業活動の貴重な水資源として使用されるとともに、湧水や伏流水となって川の流れの源にもなっている。

しかしながら、近年、産業の技術革新等により新たな化学物質による環境汚染が顕在化し、なかでもトリクロロエチレン等の有機塩素系化合物による地下水汚染が県内各地で確認されている。

表 2-10-11 市町村別地下水汚染判明事例数(平成 14 年 3 月末現在)

市田	盯木	寸 名	地区数	揮発性有機 化合物等(A)	重金属等 (B)	硝酸性窒素及び 亜硝酸性窒素(C)	地町村名	地区数	揮発性有機 化合物等(A)	重金属等 (B)	硝酸性窒素及び 亜硝酸性窒素(C)
千	葉	市	54	24	6	24	印旛村	1		1	
市	Щ	市	19	8	2	9	本 埜 村	1		1	
船	橋	市	44	21	2	21	栄 町	12		12	
松	_	市	18	10	3	4	下総町	3	2	1	
化公	\vdash	111	10	複合汚染 A +	B = 1		神崎町	2	1	1	
44		+	20	20	1	7	大栄町	4		2	2
柏		市	29	複合汚染 A-	+ B = 1		小見川町	1	1		
市	原	市	9	1	6	2	山田町	9			9
/	\ _+	. =1	170	84	20	67	多古町	4	1		3
以行	T) T)	計	173	複合汚染 A +	B=2		干潟町	4		4	
銚	子	市	4	3		1	海上町	1			1
館	Щ	市	4	4			飯岡町	1			1
1. 7	- V-	h _L			2		光 町	5		5	
不!	更 涓	1 市	3	複合汚染 A +	B = 1	1	野栄町	1		1	
野	田	市	12	10		2	大網白里町	3		3	
佐	原	市	10	1	4	5	九十九里町	5	1	4	
茂	原	市	17	15	2		成東町	4	1	2	1
成	田	市	7	3	2	2	山武町	2		1	1
佐	倉	市	20	11	2	7	蓮 沼 村	2		2	
東	金	市	12		7	5	松尾町	2	1	1	
八日	市	場市	4		2	2	横芝町	3		2	1
旭		市	3	1	2		芝山町	2		1	1
習言	志 里	予市	4	3		1	一宮町	2	1	1	
勝	浦	市	3	2	1		睦沢町	1		1	
流	Ш	市	5	4	1		長生村	3		3	
八 =	千七	大 市	16	10		6	白子町	6	2	4	
				3		2	長柄町	1		1	
我子	系 于	九 市	8	 複合汚染 A +	B = 3	1	大多喜町	1	1		
鴨	Л	市	3	3			夷 隅 町	1		1	
		> 市		7			大原町	2	2		
		市		4			岬町	1	1		
		市		6			富山町	1		1	
		市			1		鋸南町	1		1	
		1 市		4		4	千倉町	2	2		
八				2		1	天津小湊町	1	1		
				2		1					
	井	市		5		3	政令市		134	83	65
	里			3		1	以外計	286	 複合汚染 A +	L	1
		町		6		1			218	103	132
	1 🖂	1	'			1	県 計	459		L	l

表 2-10-12 測定計画による概況調査結果 (14年度)

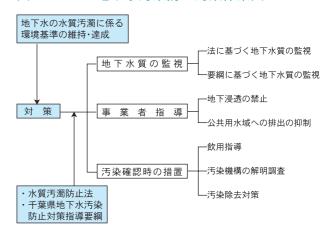

物 質 名	実施本数 (本)	検出本数 (本)	うち環境基 準超過本数 (本)	超過率 (%)	検出状況(mg/ℓ)	環境基準(mg/ℓ)
カドミウム	100	0	0	0.0		0.01以下
全 シ ア ン	89	0	0	0.0		検出されないこと
鉛	256	43	0	0.0	$0.001 \sim 0.004$	0.01以下
六 価 ク ロ ム	256	0	0	0.0		0.05以下
砒素	256	120	9	3.5	$0.001 \sim 0.034$	0.01以下
総 水 銀	89	0	0	0.0		0.0005以下
アルキル水銀	18	0	0	0.0		検出されないこと
ポリ塩化ビフェニル	89	0	0	0.0		検出されないこと
シ゛クロロメタン	110	0	0	0.0		0.02以下
四 塩 化 炭 素	266	0	0	0.0		0.002以下
1,2-ジクロロエタン	110	0	0	0.0		0.004以下
1,1-シ゛クロロエチレン	266	0	0	0.0		0.02以下
シス-1,2-シ゛クロロエチレン	266	0	0	0.0		0.04以下
1,1,1-トリクロロエタン	266	0	0	0.0		1以下
1,1,2-トリクロロエタン	110	0	0	0.0		0.006以下
トリクロロエチレン	266	1	0	0.0	0. 007	0.03以下
テトラクロロエチレン	266	2	0	0.0	$0.0005 \sim 0.0036$	0.01以下
1,3-ジクロロプロペン	89	0	0	0.0		0.002以下
チゥラム	87	0	0	0.0		0.006以下
シマジン	89	0	0	0.0		0.003以下
チオベンカルブ	89	0	0	0.0		0.02以下
ベンゼン	256	0	0	0.0		0.01以下
セレン	100	2	0	0.0	0. 002	0.01以下
硝酸性窒素及び	256	100	39	15. 2	0.01 ~ 38	10以下
亜 硝 酸 性 窒 素	250	182	39	10. 2	0.01 = 38	10以下
ふっ素	256	33	1	0. 4	$0.01 \sim 2.2$	0.8以下
ほ う 素	256	20	1	0. 4	$0.01 \sim 5.7$	1以下
E P N	48	0	0	0.0		0.006以下
ニッケル	42	5	_	_	0. 001	_
アンチモン	44	5	_	_	$0.0002 \sim 0.0005$	_
合計 (実本数)	266	226	50	18.8	_	

- (注) 1. 1井戸で複数の項目が検出されたものもある。
 - 2. EPN、ニッケル、アンチモンは要監視項目である。
 - 3. 環境基準の欄のうち、EPNは要監視項目の指針値である。

表 2-10-13 定期モニタリング調査結果

物質名	実施本数 (本)	検出本数 (本)	うち環境基 準超過本数 (本)	超過率 (%)	検出状況(mg/ℓ)	環境基準(mg∕ℓ)
鉛	2	1	1	50	0.043	0.01以下
六 価 ク ロ ム	1	1	1	100	0.78	0.05以下
砒 素	44	43	41	93. 2	$0.004 \sim 0.17$	0.01以下
シ゛クロロメタン	8	3	0	0	$0.002 \sim 0.004$	0.02以下
四 塩 化 炭 素	75	9	2	2. 7	$0.0002 \sim 0.6$	0.002以下
1,2-> * クロロエタン	8	1	1	12. 5	0. 0057	0.004以下
1,1-ジクロロエチレン	75	10	4	5. 3	$0.003 \sim 0.36$	0.02以下
シス-1,2-シ、クロロエチレン	75	26	9	12	$0.038 \sim 0.49$	0.04以下
1,1,1-トリクロロエタン	75	16	0	0	$0.0005 \sim 0.31$	1以下
1,1,2-トリクロロエタン	8	0	0	0		0.006以下
トリクロロエチレン	75	50	24	32	$0.002 \sim 6.6$	0.03以下
テトラクロロエチレン	75	51	39	52	$0.0005 \sim 1.5$	0.01以下
1,3-ジクロロプロペン	5	0	0	0		0.002以下
ベンゼン	5	0	0	0		0.01以下
硝酸性窒素及び亜硝酸性窒素	19	19	17	89. 5	1.7 \sim 65	10以下
合計 (実本数)	141	137	120	85. 1	_	_

図 2-10-9 トリクロロエチレン等使用事業場の 届出状況 (15 年 3 月末現在)


このため、県では「水質汚濁防止法」及び「千葉 県地下水汚染防止対策指導要綱」により、地下水の 水質監視及び事業者に対する規制・指導を実施す るとともに、汚染が確認された地域での調査・除去 対策を順次進めている。

1. 地下水汚染の状況

(1) 地下水汚染の確認事例

県内の地下水汚染の確認事例数(14年3月末現在)は69市町村で459地区であり、そのうちトリクロロエチレン等揮発性有機化合物による地下水

図 2-10-10 地下水污染防止対策体系図

汚染が確認されているのは、44 市町の224 件であり、砒素等重金属等による地下水汚染が確認されているのは、42 市町村の109 件、硝酸性窒素・亜硝酸性窒素による汚染が32 市町の132 件等となっている(表2-10-11)。

(2) 地下水の水質状況

水質汚濁防止法に基づく地下水の水質監視

県は、「水質汚濁防止法」に基づき毎年度測定計画を定め、地下水質の汚濁状況を常時監視している。14年度は概況調査266本、定期モニタリング調査141本の井戸を選定して測定した。

ア 概況調査

県下の全体的な地下水質の概況を把握するため、 県全域を2kmのメッシュ(場所によっては1km メッシュ)に分割し、各市町村内に1本以上の井戸 を含むよう選定し、調査を実施した。

この結果、測定井戸266本のうち砒素は9本、硝酸性窒素及び亜硝酸性窒素は39本、ふっ素は1本、ほう素は1本の井戸で、地下水質の環境基準を超過していることが確認された(表 2-10-12)。

イ 定期モニタリング調査

地下水汚染が既に確認された地区における、汚染状況を継続的に監視するため、汚染地区に選定した井戸の水質を調査した。

この結果、測定井戸141本のうち鉛、六価クロム、 砒素、四塩化炭素、1,2-ジクロロエタン、1,1-ジ クロロエチレン、シス-1,2-ジクロロエチレン、ト リクロロエチレン、テトラクロロエチレン並びに 硝酸性窒素・亜硝酸性窒素の環境基準値を超過した 井戸が120本確認された。(表 2-10-13)。

2. 地下水污染防止対策

(1) 地下水汚染防止対策の経緯

地下水汚染は、目にふれることの少ない地下で進行し、いったん汚染が発生すると汚染状況の把握、汚染原因の究明や汚染除去対策が困難なことから、未然防止が重要である。

このため、国は59年度に「トリクロロエチレン等の排出に係る暫定指導方針」を定めた後、元年10月にはトリクロロエチレン及びテトラクロロエチレンを「水質汚濁防止法」の有害物質に指定して、地下浸透を禁止し、5年4月には更に四塩化炭素等を追加し、地下水汚染防止のための規制を強化した。9年3月には、地下水の水質汚濁に係る環境基準を告示した。

また、県は、地下水の汚染防止及び汚染除去対策の推進を図るため、元年1月に「千葉県地下水汚染防止対策指導要網」を制定し、地下水質の監視・有害物質使用事業者の指導、地下水汚染が判明した場合の飲用指導、汚染範囲、汚染機構解明調査及び汚染の除去対策を市町村と協力して実施している。

なお、9年4月には「千葉県地下水汚染防止対策 指導要綱」の対象物質を追加する改正を行い、一層 の施策の充実に努めている。

(2) 事業者指導

ア トリクロロエチレン等使用事業場の届出状況 「千葉県地下水汚染防上対策指導要綱」に基づく 15年3月現在の届出件数は382事業場となっている。

主な業種別届出状況は、洗たく業 44.5%、機械 器具製造業 11.8%、金属製品製造業 14.1%等と なっている (図 2-10-9)。

イ 事業者指導状況

トリクロロエチレン等 9 物質を使用する事業者 については、「千葉県地下水汚染防止対策指導要 綱」に基づき、使用施設の設置届出の提出、自主管 理の徹底、自主検査等による指導基準の遵守を指 導している。また、県と政令市は立入調査等を実施 し、事業者に対し適正な管理等の指導を行ってい る。

14年度の立入調査は、延べ200事業場に対して 実施した(表2-10-14)。

表 2-10-14 千葉県地下水汚染防止対策指導要綱 に基づく立入調査結果(14年度)

保管区分	要綱届出 事業場数	延べ立入 事業場数	排水水質測定 延べ事業場数	指導基準違反 延べ事業場数
県	180	112	8	0
政令市	202	88	23	0
合 計	382	200	31	0

(3) 地下水汚染確認時の措置

地下水の汚染を確認したときは、県は、速やかに 井戸の所有者に対する飲用指導を行うこととして いる。また、市町村は、周辺の井戸の利用状況等を 調査し、地下水汚染の状況等を関係住民に周知さ せ、併せて汚染の実態に応じ調査を行い対策を講 じている。

揮発性有機化合物汚染が確認された市町村のうち、

(ア) 茂原市(一部)、千倉町では浄化を完了した ほか君津市、野田市、八千代市等28市町では、 汚染機構を解明し、現在、曝気処理措置等によ る汚染除去対策を実施している。

- (イ) 佐原市、四街道市等7市町においては、土 壌の汚染状況調査、汚染原因究明のための地 質ボーリング調査や地下水流動方向調査等を実 施している。
- (ウ) その他の7市町においては、汚染範囲の確認等汚染の実態把握のための調査を実施している。

県は、トリクロロエチレン等有機塩素化合物に係る地下水汚染対策を促進するため、汚染原因究明調査に係る委託事業を行うほか、市町村が実施する地下水汚染防止対策事業が円滑に推進されるよう技術的援助を行うとともに、補助金交付要綱を定め、財政的援助を行っており、14年度は、7市町について5千万円の委託事業を行うとともに、18市町村に対し4千2百万円を助成した。

また、硝酸性・亜硝酸性窒素については、概況調査でも環境基準超過率が高いため、12年度は市町村データを含めた汚染概況を取りまとめ、13年度は水質、土地利用、井戸の諸元等の詳細調査を1地区において実施した。14年度は地下水質測定計画の概況調査で把握されていない地区で、主に水道未給水地区、環境基準超過地区周辺の未調査地区の汚染実態調査及び過去に県が実施した概況及び実態調査の結果整理を行った。

第3節 土壌汚染の現状と対策

土壌は、農業や林業をはじめ私たちの生活と密接なかかわりを持っているばかりでなく、水、大気とともに地球の環境を形づくり、地球上のあらゆる生命を支える源となっている。また、いったん汚染されるとその影響が長期にわたり持続する蓄積性の汚染となる等の特徴がある。

土壌の汚染は、農作物の生育阻害や、人の健康を 損なうおそれがある農産物生産の原因となるほか、 地下水や公共用水域の水質汚染を引き起こすこと もある。

土壌汚染対策については、「農用地の土壌の汚染 防止等に関する法律」に基づき農用地を中心に各 種の対策が進められてきたが、近年、生活水準の高度化、産業活動の活発化等に伴い、新たな化学物質による環境汚染の懸念や市街地等の土壌汚染に対する関心が高まってきたことから、国では、3年8月にカドミウム等10物質について「土壌の汚染に係る環境基準」を定め、6年2月には有機塩素系化合物や農薬等に関連する15物質を追加し、さらに13年3月に、ほう素、ふっ素の2物質を追加した。

また、15年2月には「土壌汚染対策法」が施行され、有害物質を使用していた水質汚濁防止法の特定施設を廃止した場合、その土地所有者に土壌汚染の調査・報告が義務付けられることとなった。

県においては、「千葉県環境保全条例」や「公害防止協定」等により、土壌汚染の未然防止を図っているところであるが、今後とも関係機関とより一層連携を密にし、土壌汚染防止対策を進めるとともに、「土壌汚染対策法」による調査や浄化対策を進めることとしている。

1. 農用地の土壌汚染の現状

農用地の土壌汚染については、40年ごろから、カドミウム等の重金属類に汚染された農産物が全国各地で発見されるようになり、問題化した。重金属類は、土壌中で吸着・分解されることなく残留するので、一度汚染されるとその除去は非常に困難である。そこで、46年に「農用地の土壌の汚染防止等に関する法律」が施行され、カドミウム、銅、砒素及びこれらの化合物が特定有害物質として順次指定され、土壌汚染対策地域としての指定要件が定められている(表 2-10-15)。

これまでのところ、「農用地の土壌の汚染防止等に関する法律」に基づく汚染対策地域は県内にはない。

表 2-10-15 特定有害物質と農用地土染対策地域 の指定要件

杜克大安斯原	指定要件	指定年月		
特定有害物質	土壤中	玄米中	1 相处平月	
カドミウム及びその化合物		1.0以上(精米0.9)	46年 6月24日	
銅及びその化合物	125以上 (田に限る)		47年10月17日	
砒素及びその化合物	15以上 (田に限る)		50年 4月 4日	

2. 農用地の土壌汚染防止対策

(1) 監視

農用地については、11年度から定点を見直し(10年度までは108か所)、県内全域に95か所の調査定点を設け、土壌等に含まれる重金属濃度を調査し、監視をしている。

14年度は東葛飾、香取の調査を実施したが、重金属による土壌汚染は認められなかった。

(2) 汚染発生時の対策

農用地について土壌汚染が確認された場合又はそのおそれが著しい場合には、「農用地の土壌の汚染防止等に関する法律」に基づき対策地域を指定し計画を定めた上で、「水質汚濁防止法」などによる汚染源の改善指導、水源の転換や客土・排土等の土木工事による汚染の除去、栽培作物の転換等の技術指導などの対策が実施される。

(3) 防止

近年、し尿汚泥・下水汚泥等の廃棄物が増加する 傾向にあり、この対策の一つとしてたい肥等の原 料として再利用が行われている場合がある。

しかし、これらの中には、重金属類等の有害物質を含有する可能性もあるため「肥料取締法」が逐次改正され、12年10月から汚泥肥料の生産については、国への登録制となり、15年6月からは、人畜に被害を生ずるおそれがある農産物が生産される普通肥料を特定普通肥料とし、施用の規制をしている。また、国は、59年度に重金属類の蓄積の指標として土壌中全亜鉛含有量の基準値を120ppmに定めた。

県では、57年度にし尿汚泥について農用地への施用基準等を定めるとともに、63年度には県内耕地土壌の種類別に下水・し尿汚泥の施用基準を策定した。また、再生有機質資材の利用上の留意事項等について、「主要農作物等施肥基準」により周知徹底を図っている。

また、農用地等における農薬の使用に関しては、 研修会などを通して「農薬取締法」に基づく使用基 準の遵守・適正な使用を指導している。

なお、河川や湖沼の水質浄化等を目的として

しゅんせつした底質土を、周辺農地の客土に用いる場合は、重金属類の蓄積やその他障害が発生しないよう十分留意する必要があることから、これらについても指導しているところである。

3. 市街地の土壌汚染防止対策

土壌汚染は漏出や不適正な取扱いにより汚染物質が直接土壌に混入する場合や、水質汚濁などを通し間接的に引き起こされる場合がある。

工場・事業場の排水については、「水質汚濁防止 法」に基づき有害物質を含む排水の地下浸透が制限されているが、県では、「千葉県環境保全条例」に おいて、工場・事業場に重金属類の適正管理を求め るとともに、公害防止協定締結工場に対しては、協 定により土壌の汚染状況の監視を義務付けている。

また、市街地等について7年度から9年度にかけて土壌の実態を把握する調査を37地点で実施した

更に、「土壌汚染対策法」により、工場跡地等の 調査や浄化対策等を進めることとしている。