Quantitative Determination of L-DOPA in Dietary Supplements Containing *Mucuna pruriens* by High Performance Liquid Chromatography

Takashi HASEGAWA, Toshiyasu ISHII, Kazunaga TAKAHASHI, Masaaki SAIJO, Tomohide FUKIWAKE, Tomoko NAGATA and Yuji MOTOKI

Summary

We have developed a simple and rapid high performance liquid chromatography (HPLC) method for the quantification of L-DOPA in dietary supplements containing *Mucuna pruriens*. Acetonitrile/water/formic acid (50:50:1) was used as the extraction solvent and the extracts obtained were analyzed by HPLC using a hydrophilic interaction chromatography (HILIC) column. The mobile phase was 10 mmol/L ammonium formate buffer (pH 3.5)/acetonitrile (3:7) and the ultraviolet (UV) detector was set at 280 nm. The recovery was 100.8%, and relative standard deviation (RSD) values of the repeatability and intermediate precision were less than 8%. The correlation coefficient was 1.000 and the limit of quantification of L-DOPA was 100 μg/g. We used this method to determine the L-DOPA content in 14 commercial dietary supplements (capsules and tablets) containing *M. pruriens*, and found the L-DOPA content to range from 0.71 to 9.13 mg/unit.

Key words: L-DOPA, *Mucuna pruriens*, HPLC, dietary supplement, HILIC

Introduction

Mucuna pruriens (commonly known as cowhage, velvet beans, and *hassho-mame* in Japan) is an indigenous climbing legume in India and other parts of the tropics including Central and South America. *M. pruriens* seeds are used for male infertility and nervous disorders, and as an aphrodisiac in Ayurveda. *M. pruriens* seeds contain 3–6% L-3,4-dihydroxyphenylalanine (L-DOPA, levodopa)\(^1\) (Fig. 1), a pharmacetical compound used for the treatment of Parkinson’s disease\(^2\)–\(^3\). In fact, a powder formulation of *M. pruriens* seeds is used for the treatment of Parkinson’s disease\(^4\).

In recent years, with the increase in health consciousness among individuals, the consumption of dietary supplements has increased. A case of sudden death associated with the ingestion of a dietary supplement containing guarana was reported\(^5\). *M. pruriens* is also used in dietary supplements that appealed to have a stimulating effect. Because of the health risks associated with the intake of dietary supplements containing *M. pruriens*, it is important that the L-DOPA content in these products be determined.

A rapid reverse-phase high performance liquid chromatography (HPLC) method for the quantification of L-DOPA and non-methylated and methylated tetrahydroisoquinoline compounds present in mucuna beans was reported\(^6\). High-performance thin-layer chromatography was used to determine the L-DOPA content in tablets\(^7\) and formulations containing *M. pruriens*\(^8\). The HPLC determination of L-DOPA in dietary supplements has not been reported yet, as far as we know. In this study, we established a simple and rapid HPLC method for the determination of L-DOPA in dietary supplements containing *M. pruriens* and applied this method to determine the L-DOPA content in commercial dietary supplements.

Material and Methods

Standard and reagents

Standard L-DOPA was purchased from Alfa Aesar (MA, USA). HPLC-grade acetonitrile and all other reagents (analytical grade) were purchased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan).

Standard solution

A stock standard solution (1000 μg/mL) was prepared by dissolving 20 mg of standard L-DOPA in 20 mL acetonitrile/water/formic acid (50:50:1). Working standard solutions were prepared by diluting the stock solution with acetonitrile/water/formic acid (50:50:1) in the concentration range of 0.5–100 μg/mL.

Sample

Fourteen dietary supplements that were analyzed were purchased over the internet. According to the labels, these products (tablets and capsules) contained *M. pruriens*. *M. pruriens* seeds (stock No. 55132) were obtained from the Genebank of the National Institute of Agrobiological Sciences.

1) Formerly Chiba Prefectural Institute of Public Health
Preparation of sample extract

The tablets, the contents of the capsules, and whole seeds of *M. pruriens* were finely powdered using a grinder. One hundred mg of this powder was transferred into a 10-mL test tube, and 5 mL acetonitrile/water/formic acid (50:50:1) was added to it. This mixture was ultrasonically extracted for 15 min. After centrifuged at 1,300 \(\times\) g for 10 min, the supernatant was transferred to a 20-mL volumetric flask. The precipitate was reextracted with 5 mL acetonitrile/water/formic acid (50:50:1) under the same conditions and centrifuged. The supernatants collected during the extractions were combined and the volume was adjusted to 20 mL with acetonitrile/water/formic acid (50:50:1). A portion of this solution was filtered through a 0.45-\(\mu\)m polytetrafluoroethylene membrane filter (Toyo Roshi Kaisha, Tokyo, Japan). This filtrate was diluted 10-fold with acetonitrile/water/formic acid (50:50:1), when required.

HPLC analysis

HPLC was performed using a PU-2089 apparatus equipped with an ultraviolet (UV) detector (model UV-970; JASCO Corporation, Tokyo, Japan). A TSK-GEL Amide-80 column (250 \(\times\) 4.6 mm i. d.; 5 \(\mu\)m; Tosoh Co., Tokyo, Japan) was used. The mobile phase was 10 mmol/1 ammonium formate buffer (pH 3.5)/acetonitrile (3:7). The flow rate of the mobile phase was set at 1.0 mL/min, and the injection volume was 20 \(\mu\)L. The column temperature was maintained at 40°C. The UV detector was set at 280 nm.

Results and Discussion

Evaluation of the extraction method

In order to identify a suitable extraction solvent, acetonitrile, acetonitrile/water (80:20), acetonitrile/water (50:50), acetonitrile/formic acid (100:1), acetonitrile/water/formic acid (80:20:1), and acetonitrile/water/formic acid (50:50:1) were investigated. Five milliliters of each of these solvents were added into six 10-mL test tubes; 100 mg of *M. pruriens* seed powder was transferred to each of these test tubes. The mixtures were ultrasonically extracted for 15 min. The supernatants were obtained by centrifugation (1,300 \(\times\) g for 10 min). The precipitates were reextracted twice with 5 mL of the corresponding solvent and centrifuged. The supernatants obtained from the 3 extractions for each of the 6 different solvents were filtered, and the filtrates were analyzed by HPLC.

Figure 2 shows the extraction behavior of L-DOPA in *M. pruriens* seed powder for the 6 different solvents. The amount of L-DOPA extracted with acetonitrile and acetonitrile/formic acid (100:1) was the least. Acetonitrile/water/formic acid (50:50:1) was found to be the most effective extraction solvent and L-DOPA was completely extracted after the second extraction was performed. Therefore, twice ultrasonic extraction with acetonitrile/water/formic acid (50:50:1) were applied.
in further analysis.

HPLC analysis

An octadecylsilyl column was used for L-DOPA analysis according to a previously described HPLC method for the quantification of L-DOPA in *Mucuna* beans. From the result of peak purity analysis with diode array detector, L-DOPA was co-eluted with interfering components from the sample solution (data not shown). Therefore, a hydrophilic interaction chromatography (HILIC) column was used for the analysis. The chromatograms of the standard solution and *M. pruriens* seed sample, and a typical chromatogram of sample extract (sample No. 6) are shown in Fig. 3. L-DOPA was eluted at approximately 8.5 min, and interference on the chromatogram for the *M. pruriens* seed sample and the sample extracts was not observed. The standard calibration curve of L-DOPA was good in the range of 0.5–100 μg/mL. The correlation coefficient was 1.0000. The limit of quantification of L-DOPA was 100 μg/g (S/N=10).

Recovery and precision

According to the Japanese method validation guideline, the validation of this quantification method was evaluated by analyzing a known amount of standard L-DOPA (2 mg/g) spiked to 100 mg of a pre-analyzed sample in duplicate on 5 different days. The recovery was found to be 100.8%, and relative standard deviation (RSD) values of the repeatability and intermediate precision were less than 8% (Table 1). These results suggest that good accuracy and precision can be obtained using this method.

Determination of L-DOPA content in *M. pruriens* seeds and commercial dietary supplements

The L-DOPA content in *M. pruriens* seeds was 3.26% (dry weight), and the L-DOPA content in the 14 commercial dietary supplements ranged from 0.71 to 9.13 mg/unit (Table 2). The maximum intake of L-DOPA per day was calculated from the maximum dosage indicated on the package of each product. The maximum intake was found to range from 2.12 to 54.8 mg/day. The initial dosage of levodopa (L-DOPA) ranges from

Table 1. Recovery and precision of L-DOPA from spiked sample

<table>
<thead>
<tr>
<th>Spiked amount (mg/g)</th>
<th>Recovery* (%)</th>
<th>Repeatability (%RSD)</th>
<th>Intermediate precision (%RSD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>100.8</td>
<td>7.23</td>
<td>7.50</td>
</tr>
</tbody>
</table>

a) Means of 10 replicates

Table 2. L-DOPA content in commercial dietary supplements containing *M. pruriens*

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Dosage form</th>
<th>Content* (mg/unit)</th>
<th>Indicated maximum dosage (unit/day)</th>
<th>Calculated maximum intake (mg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Capsule</td>
<td>2.79</td>
<td>5</td>
<td>13.9</td>
</tr>
<tr>
<td>2</td>
<td>Tablet</td>
<td>4.53</td>
<td>4</td>
<td>18.1</td>
</tr>
<tr>
<td>3</td>
<td>Softgel</td>
<td>0.71</td>
<td>3</td>
<td>2.12</td>
</tr>
<tr>
<td>4</td>
<td>Tablet</td>
<td>6.44</td>
<td>8</td>
<td>51.5</td>
</tr>
<tr>
<td>5</td>
<td>Tablet</td>
<td>9.13</td>
<td>6</td>
<td>54.8</td>
</tr>
<tr>
<td>6</td>
<td>Tablet</td>
<td>0.91</td>
<td>8</td>
<td>7.29</td>
</tr>
<tr>
<td>7</td>
<td>Tablet</td>
<td>3.12</td>
<td>6</td>
<td>18.7</td>
</tr>
<tr>
<td>8</td>
<td>Capsule</td>
<td>2.49</td>
<td>5</td>
<td>12.4</td>
</tr>
<tr>
<td>9</td>
<td>Tablet</td>
<td>0.82</td>
<td>6</td>
<td>4.94</td>
</tr>
<tr>
<td>10</td>
<td>Tablet</td>
<td>3.34</td>
<td>2</td>
<td>6.69</td>
</tr>
<tr>
<td>11</td>
<td>Tablet</td>
<td>1.27</td>
<td>8</td>
<td>10.2</td>
</tr>
<tr>
<td>12</td>
<td>Capsule</td>
<td>5.80</td>
<td>6</td>
<td>34.8</td>
</tr>
<tr>
<td>13</td>
<td>Capsule</td>
<td>3.00</td>
<td>2</td>
<td>5.99</td>
</tr>
<tr>
<td>14</td>
<td>Capsule</td>
<td>5.88</td>
<td>2</td>
<td>11.8</td>
</tr>
</tbody>
</table>

a) Values are means (n=3)
0.2 to 0.6 g/day divided over 1, 2, or 3 doses. As per the dosage mentioned on the package, if an individual took 6 tablets of sample No. 5, the amount of L-DOPA ingested would be one-fourth of the minimum L-DOPA dosage. Thus, there are health risks associated with the intake of dietary supplements containing *M. pruriens*. Therefore, it is important that the L-DOPA content in dietary supplements be monitored.

References